Repository logo
 
Publication

Optimization methods for energy management in a microgrid system considering wind uncertainty data

dc.contributor.authorAmoura, Yahia
dc.contributor.authorPereira, Ana I.
dc.contributor.authorLima, José
dc.date.accessioned2023-03-20T15:21:36Z
dc.date.available2023-03-20T15:21:36Z
dc.date.issued2021
dc.description.abstractEnergy management in the microgrid system is generally formulated as an optimization problem. This paper focuses on the design of a distributed energy management system for the optimal operation of the microgrid using linear and nonlinear optimization methods. Energy management is defined as an optimal scheduling power flow problem. Furthermore, a technical-economic and environmental study is adopted to illustrate the impact of energy exchange between the microgrid and the main grid by applying two management scenarios. Nevertheless, the fluctuating effect of renewable resources especially wind, makes optimal scheduling difficult. To increase the results reliability of the energy management system, a wind forecasting model based on the artificial intelligence of neural networks is proposed. The simulation results showed the reliability of the forecasting model as well as the comparison between the accuracy of optimization methods to choose the most appropriate algorithm that ensures optimal scheduling of the microgrid generators in the two proposed energy management scenarios allowing to prove the interest of the bi-directionality between the microgrid and the main grid.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAmoura, Yahia Pereira, Ana I. Lima, José (2021). Optimization methods for energy management in a microgrid system considering wind uncertainty data. In International Conference on Communication and Computational. p. 117 - 141pt_PT
dc.identifier.doi10.1007/978-981-16-3246-4_10pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27861
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMicrogridpt_PT
dc.subjectEnergy management systempt_PT
dc.subjectOptimization algorithmspt_PT
dc.subjectSet-pointspt_PT
dc.subjectWind forcastingpt_PT
dc.subjectArtificial neural networkpt_PT
dc.titleOptimization methods for energy management in a microgrid system considering wind uncertainty datapt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage141pt_PT
oaire.citation.startPage117pt_PT
oaire.citation.titleInternational Conference on Communication and Computationalpt_PT
person.familyNameAmoura
person.familyNamePereira
person.familyNameLima
person.givenNameYahia
person.givenNameAna I.
person.givenNameJosé
person.identifierR-000-8GD
person.identifier.ciencia-id1C1C-915D-DB4E
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0002-8811-0823
person.identifier.orcid0000-0003-3803-2043
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridF-3168-2010
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id15071961600
person.identifier.scopus-author-id55851941311
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication653c4356-dd18-4680-9774-da86a446d0e5
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscovery653c4356-dd18-4680-9774-da86a446d0e5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EasyChair-Preprint-4901.pdf
Size:
841.43 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: