Repository logo
 
Loading...
Project Logo
Research Project

Transport Phenomena Research Center

Authors

Publications

Label-free multi-step microfluidic device for mechanical characterization of blood cells: diabetes type II
Publication . Pinho, Diana; Faustino, Vera; Catarino, Susana; Pereira, Ana I.; Minas, Graça; Pinho, Fernando T.; Lima, Rui A.
The increasing interest to establish significant correlations between blood cell mechanical measurements and blood diseases, has led to the promotion of microfluidic devices as attractive clinical tools for potential use in diagnosis. A multi-step microfluidic device able to separate red and white blood cells (RBCs and WBCs) from plasma and simultaneously measure blood cells deformability (5 and 20% of hematocrit) is presented in this paper. The device employs passive separation based on the cross-flow filtration principle, introduced at each daughter channel. At the outlets, hyperbolic geometries allow single-cell deformability analysis. The device was tested with blood from five healthy and fifteen diabetic type II voluntary donors. The results have shown that WBCs have lower deformability than RBCs, and no significant differences were observed in WBCs from healthy and pathological blood samples. In contrast, RBCs have shown significant differences, with pathological cells exhibiting lower deformability. Shear rheology has shown that blood from patients with type II diabetes has higher viscosity than blood from healthy donors. This microfluidic device has demonstrated the ability to reduce cell concentration at the outlets down to 1%, an ideal cell concentration for assessing the blood cells deformability, under healthy and pathological conditions. The results provide new insights and quantitative information about the hemodynamics of in vitro type II diabetes mellitus RBCs. Thus, such device can be a promising complement in clinical diagnosis and biological research as part of an integrated blood-on-a-chip system.
Physicochemical Characterisation of Olive Mill Wastewaters Based on Extraction Methods and Filtration Levels
Publication . Afonso, Inês Santos ; Duarte, Cristina; Afonso, Maria João A.P.S.; Ribeiro, António E.; Amaral, Joana S.; Sousa, Patrícia C.; Lima, Rui A.; Ribeiro, João E.
Olive mill wastewaters (OMWW) generated during olive oil extraction represent a significant environmental challenge due to their high organic matter content, acidic pH, phenolic content, and toxicity. Their composition varies widely depending on the extraction method and remains difficult to treat, particularly for small-scale producers lacking access to complex infrastructure. This study evaluates the combined effect of the extraction system (traditional vs. three-phase continuous) and filtration level (single vs. double) on the physicochemical and biological properties of OMWW. The methodologies employed included the analysis of water content, density, fatty acid composition, acidity, pH, total solids, chemical and biochemical oxygen demand, and biodegradability. The results indicate that traditional systems consistently produced OMWW with higher organic matter and phenolic loads, while filtration moderately reduced antioxidant potential and acidity, especially in traditional systems. The use of simple, low-cost filtration materials proved effective in improving effluent clarity and could serve as a practical pre-treatment option. This approach offers an accessible strategy for small producers aiming to valorise OMWW or reduce environmental impact. However, the study was conducted at the laboratory scale, and the long-term behaviour of filtered OMWW under real operating conditions remains to be evaluated.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDP/00532/2020

ID