Repository logo
 
Loading...
Project Logo
Research Project

A sustainable and innovative strategy in wound management: development of a healing bio-based formulation resorting to winery by-products bioactive compounds

Authors

Publications

Exploring the therapeutic potential of Quercus ilex acorn extract in papillomavirus-induced lesions
Publication . Medeiros-Fonseca, Beatriz; Faustino-Rocha, Ana; Pires, Maria João; Neuparth, Maria João; Vala, Helena; Vasconcelos-Nóbrega, Cármen; Gouvinhas, Irene; Barros, Ana Novo; Dias, Maria Inês; Barros, Lillian; Bastos, Margarida M.S.M.; Gonçalves, Lio; Félix, Luís; Venâncio, Carlos; Medeiros, Rui; Costa, Rui Miguel Gil; Oliveira, Paula A.
Papillomaviruses (PVs) infections have been documented in numerous animal species across different regions worldwide. They often exert significant impacts on animal health and livestock production. Scientists have studied natural products for over half a century due to their diverse chemical composition, acknowledging their value in fighting cancer. Acorns (Quercus ilex) are believed to have several unexplored pharmacological properties. This study aimed to evaluate the in vivo safety and cancer chemopreventive activity of an infusion extract of Q. ilex in a transgenic mouse model of human PV (HPV)-16, which developed squamous cell carcinomas through a multistep process driven by HPV16 oncogenes. Q. ilex extract was prepared by heating in water at 90°C and then characterized by mass spectrometry. Phenolic compounds from this extract were administered in drinking water to female mice in three different concentrations (0.03, 0.06, and 0.09 g/mL) over a period of 28 consecutive days. Six groups (n = 6) were formed for this study: group 1 (G1, wildtype [WT], water), group 2 (G2, HPV, water), group 3 (G3, WT, 0.09 g/mL), group 4 (G4, HPV, 0.03 g/mL), group 5 (G5, HPV, 0.06 g/ mL), and group 6 (G6, HPV, 0.09 g/mL). Throughout the experiment, humane endpoints, body weight, food intake, and water consumption were recorded weekly. Following the experimental period, all mice were sacrificed, and blood, internal organs, and skin samples were collected. Blood was used to measure glucose and microhematocrit and later biochemical parameters, such as creatinine, urea, albumin, alanine aminotransferase, and total proteins. Histological analysis was performed on skin and organ samples. The administration of Q. ilex extract resulted in a statistically significant increase in relative organ weight among HPV transgenic animals, indicating adaptive biological response to the tested concentrations. Moreover, a reduction in characteristic skin lesions was observed in animals treated with the 0.06 and 0.09 g/mL extract. These results provide a favorable chemopreventive profile for Q. ilex extract at concentrations of 0.06 and 0.09 g/mL. This study highlights the potential of Q. ilex extract as a safe and effective therapeutic strategy against HPV16- associated lesions in transgenic mouse models. The limitation of our study was the durability of transgenic animals. As a more sensitive species, we must always be careful with the durability of the test. We intend to study concentrations of 0.06 and 0.09 g/mL for longer to further investigate their possible effects.
A Reliable Molecular Diagnostic Tool for CA90 (Castanea sativa × Castanea crenata) Hybrid Identification Through SSR
Publication . Yussif, Toufiq Soale; Cruz, Nadine Evora da; Coelho, Valentim; Gouveia, Maria Eugénia; Choupina, Altino Branco
Chestnut trees are an essential source of both food and timber. However, the severe threats from invasive pests and diseases compromise their existence and productivity. In Europe, chestnut hybridization programs have been initiated to produce resilient rootstocks in response to ink disease. However, the gap in the identification of these hybrid plants is typically based on field observations and morphological features and remains a challenge. Our study presents a marker set for distinguishing between chestnut hybrid CA90 (Castanea sativa × Castanea crenata), a hybrid with demonstrated resistance to Phytophthora cinnamomi, and other varieties using microsatellite (SSR) markers and bioinformatics tools. We used 35 chestnut samples, including three CA90 controls, hybrids sampled within Portugal, with an aim to define the profiles of the chestnut hybrids and varieties in this study based on band patterns and SSR motifs. We selected and modified nine distinct SSR primers with null allelic features from 43 already developed simple sequence repeat (SSR) markers. PCR amplification and agarose gel electrophoresis were used to amplify and visualize the DNA bands. To confirm genetic variations, 27 amplified bands were sequenced by Sanger sequencing. This analysis identified 31 SSRs across 22 SSR-containing sequences, with trinucleotide (67.74%) repeats being the most common, followed by repeats of dinucleotide (22.58%), mononucleotide (6.45%), and hexanucleotide (3.23%). A total of 18 alleles were observed for the nine loci. The alleles ranged from one to three per locus for the 35 samples. The novel locus CP4 could only be found in CA90 hybrids. This tool can aid in identifying and selecting disease-resistant hybrids, thereby contributing to chestnut production and management strategies.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

CEEC IND5ed

Funding Award Number

2022.00498.CEECIND/CP1749/CT0001

ID