Repository logo
 
Loading...
Project Logo
Research Project

Centre of Biological Engineering of the University of Minho

Authors

Publications

Volatile-olfactory profiles of cv. Arbequina olive oils extracted without/with olive leaves addition and their discrimination using an electronic nose
Publication . Marx, Ítala; Rodrigues, Nuno; Veloso, Ana C.A.; Casal, Susana; Pereira, J.A.; Peres, António M.
Oils from cv. Arbequina were industrially extracted together with olive leaves of cv. Arbequina or Santulhana (1%, w/w), and their olfactory and volatile profiles were compared to those extracted without leaves addition (control). -e leaves incorporation resulted in green fruity oils with fresh herbs and cabbage olfactory notes, while control oils showed a ripe fruity sensation with banana, apple, and dry hay grass notes. In all oils, total volatile contents varied from 57.5 to 65.5 mg/kg (internal standard equivalents), being aldehydes followed by esters, hydrocarbons, and alcohols the most abundant classes. No differences in the number of volatiles were observed. -e incorporation of cv. Arbequina or Santulhana leaves significantly reduced the total content of alcohols and esters (minus 37–56% and 10–13%, respectively). Contrary, cv. Arbequina leaves did not influence the total content of aldehydes or hydrocarbons, while cv. Santulhana leaves promoted a significant increase (plus 49 and 10%, respectively). -us, a leaf-cultivar dependency was observed, tentatively attributed to enzymatic differences related to the lipoxygenase pathway. Olfactory or volatile profiles allowed the successful unsupervised differentiation of the three types of studied cv. Arbequina oils. Finally, a lab-made electronic nose was applied to allow the nondestructive discrimination of cv. Arbequina oils extracted with or without the incorporation of olive leaves (100% and 99 ± 5% of correct classifications for leave-one-out and repeated K-fold crossvalidation variants), being a practical tool for ensuring the label correctness if future commercialization is envisaged. Moreover, this finding also strengthened that olive oils extracted with or without olive leaves incorporation possessed quite different olfactory patterns, which also depended on the cultivar of the olive leaves.
A Comprehensive Review of Fish Protein Hydrolysates Targeting Pet Food Formulations
Publication . Ribeiro, Tânia Isabel Bragança; Maia, Margarida R.G.; Fonseca, António J.M.; Marques, Bianca; Caleja, Cristina; Rosa, Ana; Martins, Rui; Almeida, André; Mota, Maria J.; Aires, Tiago; Rocha, Cristina M.R.; Teixeira, José António; Cabrita, Ana R.J.; Barros, Lillian; Pintado, Manuela
The fish industry generates significant amounts of fish by- and co-products (FBCPs) annually, projected to reach 160.8 million tonnes by 2030. This growth highlights the urgent need for sustainable FBCP management and an opportunity to improve the sector’s environmental sustainability. Fish protein hydrolysates (FBCPHs) and bioactive peptides (BPs) derived from these FBCPs are gaining recognition in the pet food sector for their nutritional and bioactives benefits. FBCPHs, primarily sourced from category 3 by-products unsuitable for human consumption, could significantly enhance the economic viability of both industries. This review analyzes production processes, highlighting the benefits and challenges of enzymatic hydrolysis and reviewed emerging technologies such as subcritical water hydrolysis (SWH), which are promising sustainable alternatives by enhancing extraction efficiency and reducing energy consumption. The review explores FBCPHs’ applications in pet food, focusing on beneficial biological activities (e.g. antioxidant, prebiotic, neuroprotective). Findings show FBCPHs have significant potential in pet food formulations, providing palatability, hypoallergenic benefits, and addressing health concerns like gastrointestinal disorders and stress-related behaviors. However, further research is required to optimize production processes, scale industrial application, and ensure regulatory compliance. In conclusion, FBCPHs present a valuable solution for promoting sustainability, improving pet nutrition, and supporting the circular economy.
Lactic acid bacteria from artisanal raw goat milk cheeses: technological properties and antimicrobial potential
Publication . Silva, Beatriz Nunes; Fernandes, Nathália; Carvalho, Laís; Faria, Ana Sofia; Teixeira, José António; Rodrigues, Carina; Gonzales-Barron, Ursula; Cadavez, Vasco
In cheese-making, a starter culture composed of adequately chosen lactic acid bacteria (LAB) may be suitable to ensure the rapid acidification of milk, improve textural and sensory characteristics, and avoid pathogen proliferation. In this work, 232 LAB isolates collected from artisanal goat’s raw milk cheeses produced in Portugal were evaluated for their antimicrobial capacity (at 10 and 37°C), as well as their acidifying and proteolytic properties. Among the 232 isolates, at least 98% of those isolated in De Man- Rogosa-Sharpe (MRS) agar presented antagonism against Listeria monocytogenes, Salmonella Typhimurium, or Staphylococcus aureus, whereas less than 28.1% of M17-isolated LAB showed antagonism against these pathogens. M17-isolated LAB displayed better results than MRS ones in terms of acidifying capacity. As for the proteolytic assay, only 2 MRS isolates showed casein hydrolysis capacity. Principal component analyses and molecular characterization of a subset of selected isolates were conducted to identify those with promising capacities and to correlate the identified LAB genera and species with their antimicrobial, acidifying, and/or proteolytic properties. Lactococcus strains were associated with the highest acidifying capacity, whereas Leuconostoc and Lacticaseibacillus strains were more related to antimicrobial capacities. Leuconostoc mesenteroides, Lactococcus lactis, and Lacticaseibacillus paracasei were the predominant organisms found. The results of this work highlight various strains with pathogen inhibition capacity and suitable technological properties to be included in a customized starter culture. In future work, it is necessary to appropriately define the starter culture and implement it in the cheese-making process to evaluate if the in-vitro capacities are observable in a real food system.
Kinetic study of the microwave-induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil
Publication . Cherif, Marwa; Rodrigues, Nuno; Veloso, Ana C.A.; Pereira, J.A.; Peres, António M.
The effect of typical domestic microwave heating (0–15 min, at 800 W) on the thermal degradation of unflavored and flavored olive oils' minor bioactive compounds and related antioxidant activity was studied. Olive oils from cv. Arbequina were flavored with lemon verbena essential oil (0%, 0.2% and 0.4%, w/w) leading to a linear increase of total phenols (112–160 mg gallic acid kg−1 oil, R-Pearson = +0.9870), total carotenoids (2.19–2.56 mg lutein kg−1 oil, R-Pearson = +0.9611), and, to a less extent, of chlorophyll (2.32–3.19 mg pheophytin kg−1 oil, R-Pearson = +0.8238). However, no such linear trend was observed for the oxidative stability (6.5–7.8 h) or the radical scavenging activity (inhibition rates: 40%–43%). The contents of total phenols, total carotenoids, and chlorophyll decreased with the rise of the microwave heating time, following their thermal degradation, a second-order kinetic model (0.8784 ≤ R-Pearson ≤ 0.9926). The essential oil addition did not influence the estimated second-order rate reaction constants of total phenols (0.00070–0.00072 kg oil min−1 mg−1 gallic acid)and total carotenoids (0.14–0.17 kg oil min−1 mg−1 lutein), with a broader variation observed for chlorophyll (0.014–0.022 kg oil min−1 mg−1 pheophytin). Globally, total carotenoids degraded faster than total phenols and chlorophyll (half-life of 2.3–3.4, 8.8–12.8, and 14.5–30.8 min, respectively). Moreover, except for chlorophyll, the half-life of total phenols and carotenoids linearly decreased with the essential oil addition (R-Pearson: −0.9999 and −0.9421, respectively), showing that flavoring did not have a protective effect against degradation when subjected to a microwave heating.
Phytochemical composition and bioactive potential of melissa officinalis L., Salvia officinalis L. and Mentha spicata L. extracts
Publication . Silva, Beatriz Nunes; Cadavez, Vasco; Caleja, Cristina; Pereira, Eliana; Calhelha, Ricardo C.; Añibarro-Ortega, Mikel; Finimundy, Tiane C.; Kostić, Marina; Soković, Marina; Teixeira, José António; Barros, Lillian; Gonzales-Barron, Ursula
Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/04469/2020

ID