Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Experimental and numerical analyses of the hemodynamics impact on real intracranial aneurysms: A particle tracking approach
Publication . Souza, Andrews; Lopes, Diogo; Souza, Sérgio; Ribeiro, J.E.; Ferrera, Conrado; Lima, Rui A.
This study investigates the impact of hemodynamics on real intracranial aneurysms (IAs) using experiments and computational fluid dynamics (CFD) simulations. A particle tracking velocimetry (PTV) approach was used to study the vortical structures inside a real aneurysm and validate numerical simulations performed at a steady regime for different flow rates. Moreover, this and two additional patient-specific cases have been numerically analyzed, focusing on flow patterns, wall shear stress (WSS), relative residence time (RRT), and oscillatory shear index (OSI) for transient studies. For the transient simulations, vorticity profiles indicated significant rotation of fluid particles in the neck and outlet arteries. TAWSS analysis revealed high WSS values in the bifurcation zone, neck, and middle cerebral artery (MCA), with variations among the patients. OSI and RRT plots provided insights into disturbed flow patterns, low or oscillatory WSS areas, and regions with prolonged residence time. This study shows great potential for combining PTV and CFD to obtain detailed insights into flow structures in aneurysms, which are crucial to developing effective treatments and interventions for IA management.
Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications
Publication . Souza, Andrews; Nobrega, Glauco Tapijara Vallicelli; Neves, Lucas Boniatti; Barbosa, Filipe; Ribeiro, J.E.; Ferrera, Conrado; Lima, Rui A.
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies.
Experimental evaluation of green nanofluids in heat exchanger made oF PDMS
Publication . Nobrega, Glauco Tapijara Vallicelli; Souza, Reinaldo Rodrigues de; Cardoso, Beatriz D.; Afonso, Inês Santos; Pereira, José Eduardo; Cardoso, Elaine; Moita, Ana S.; Ribeiro, J.E.; Lima, Rui A.
Conventional methods for synthesizing metallic nanoparticles face challenges such as instability and environmental concerns. Therefore, new, simpler, and more eco-friendly methods are being explored. In this context, the study reports a green synthesis process to produce magnetic iron oxide nanoparticles using an aqueous extract of the alga Chlorella vulgaris. This process leverages natural resources to create a sustainable nanofluid known as green nanofluid. To evaluate the characteristics of this nanofluid, experimental measurements of wettability, viscosity, thermal conductivity, and qualitative stability analysis were conducted. An experimental setup consisting of a heat exchanger made of polydimethylsiloxane (PDMS) was used to assess the thermal performance and the results were compared to theoretical equations and numerical simulation. Additionally, thermographic imaging of temperature gradients as the fluids passed over the heated surface of the serpentine channel were made. The main findings confirmed that the nanofluid was more stable than that obtained by traditional methods and had a more uniform temperature distribution over the heat exchanger. The higher concentration exhibited superior thermal performance compared to DI-Water. Moreover, the green nanofluid was used at a weight concentration of 0.1 wt%, provided thermal performance results of nearly 4.5% superior to those estimated by the numerical model and 6.4% higher than those experimentally obtained with the base fluid, respectively. Finally, the results obtained for the nanofluid also showed an average increase of around 5% in the viscosity of the base fluid, with a more significant sedimentation at a concentration of 0.1 wt%.
Mechanical and optical properties assessment of an innovative PDMS/beeswax composite for a wide range of applications
Publication . Ariati, Ronaldo; Souza, Andrews; Souza, Maria S.; Zille, Andrea; Soares, Delfim; Lima, Rui A.; Ribeiro, J.E.
Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materials are applied in hydrophobic coatings, clear films for foods, and films with controllable transparency. However, there is no study with a wide range of mechanical, optical, and wettability tests, and with various proportions of beeswax reported to date. Thus, we report an experimental study of these properties of pure PDMS with the addition of beeswax and manufactured in a multifunctional vacuum chamber. In this study, we report in a tensile test a 37% increase in deformation of a sample containing 1% beeswax (BW1%) when compared to pure PDMS (BW0%). The Shore A hardness test revealed a 27% increase in the BW8% sample compared to BW0%. In the optical test, the samples were subjected to a temperature of 80 ◦C and the BW1% sample increased 30% in transmittance when compared to room temperature making it as transparent as BW0% in the visible region. The thermogravimetric analysis showed thermal stability of the BW8% composite up to a temperature of 200 ◦C. The dynamic mechanical analysis test revealed a 100% increase in the storage modulus of the BW8% composite. Finally, in the wettability test, the composite BW8% presented a contact angle with water of 145◦. As a result of this wide range of tests, it is possible to increase the hydrophobic properties of PDMS with beeswax and the composite has great potential for application in smart devices, food and medicines packaging films, and films with controllable transparency, water-repellent surfaces, and anti-corrosive coatings.
Experimental Investigation of Green Nanofluids: Assessment of Wettability, Viscosity and Thermal Conductivity
Publication . Nobrega, Glauco Tapijara Vallicelli; Cardoso, Beatriz D.; Barbosa, Filipe; Pinho, Diana; Abreu, Cristiano; Souza, Reinaldo Rodrigues de; Moita, Ana S.; Ribeiro, J.E.; Lima, Rui A.
Metallic nanoparticles are a type of nanomaterial synthesized from metallic precursors. Due to their unique physiochemical, electrical, and optical properties, metallic nanoparticles are widely studied and applied in various areas such as medicine, electronics, and heat transfer systems. However, conventional synthesis methods to produce metallic nanoparticles face challenges such as instability and environmental concerns, prompting the exploration of greener synthesis methods. Green synthesis uses natural resources like plants and algae as reducing agents, offering a more environmentally friendly approach for the synthesis of metallic nanoparticles. These green-synthesized metallic nanoparticles can enhance heat transfer by becoming part of nanofluids (NFs), which are colloidal mixtures of NPs in a fluid base. NFs, employed for heat transfer. As a result, it is essential to characterize the NFs regarding wettability, viscosity, and thermal conductivity. The results of the spectrophotometer confirmed the green synthesis of NPs, and it was observed that the increase in NP concentration impacted the contact angle, improving the ability to wet. The thermal conductivity is also modified, with an improvement of 11.3% compared to distilled water, without a significant increase in fluid viscosity.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Concurso de Projetos de I&D em Todos os Domínios Científicos - 2022

Funding Award Number

2022.06207.PTDC

ID