Loading...
Research Project
Untitled
Funder
Authors
Publications
Solar thermo-photocatalytic methanation using a bifunctional RuO2:TiO2/Z13X photocatalyst/adsorbent material for efficient CO2 capture and conversion
Publication . Paulista, Larissa O.; Ferreira, Alexandre F.P.; Rodrigues, Alírio; Martins, Ramiro; Boaventura, Rui; Vilar, Vítor J.P.; Silva, Tânia F.C.V.
A novel bifunctional photocatalyst/adsorbent material based on the RuO2:TiO2/zeolite 13X (Z13X) composite was developed to enhance solar-driven methanation through simultaneous carbon dioxide (CO2) capture and thermo-photoconversion. The activity/stability of the hybrid material towards methane (CH4) production was assessed by varying the (i) photocatalyst composition (Ru load and semiconductor type), (ii) bifunctional material composition (photocatalyst-to-zeolite ratio) and impregnation method, (iii) illumination source and power (simulated sunlight and UVA/Visible LEDs), (iv) temperature, and (v) catalyst reuse. Additionally, adsorption equilibrium isotherms were determined to characterize the adsorption ability of the bifunctional material for both CO2 and CH4 gases. The hybrid RuO2(4.0%):TiO2(26.3%)/Z13X material (30 mg), synthesised by the solid-state impregnation method, showed the best results under simulated sunlight (0.75 W) at 150 ºC, achieving a 88% CO2 thermo-photoreduction after 100 min, corresponding to a specific CH4 production of 29.2 mmol gactive_cat−1 h−1 (309 mmol gRu−1 h−1) and apparent quantum yield of 20.7%. In adsorption equilibrium isotherms, the bifunctional material's adsorption was about 2.6-fold higher than the photocatalyst at 150 ºC, suggesting that enhanced methanation performance can be attributed to the synergistic action of CO2 capture and thermo-photoconversion.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
POR_NORTE
Funding Award Number
SFRH/BD/137639/2018