Loading...
Research Project
HOPE: HousehOld Particulate mattEr: sources, chemical composition and toxicity.
Funder
Authors
Publications
Chemical speciation and oxidative potential of PM10 in different residential microenvironments: Bedroom, living room and kitchen
Publication . Cipoli, Yago Alonso; Vicente, Estela D.; Evtyugina, Margarita; Figueiredo, Daniela R.; Pietrogrande, Maria C.; Lucarelli, Franco; Feliciano, Manuel; Ryšavý, Jiří; Alves, Célia
Exposure to particulate matter (PM) and its chemical constituents in residential microenvironments has become a major health concern worldwide. The oxidative potential (OP) has been proposed as a metric for estimating the PM capacity to induce oxidative stress and, consequently, health effects. In the present study, PM10 was daily monitored simultaneously in the bedroom, living room and kitchen of three dwellings for one week in a small town of Portugal, to perform a detailed characterisation of its organic and inorganic constituents and the determination of the OP. Bedrooms (B) were found to be a hotspot of PM10 concentrations (B1 = 22.7 μg m-3; B2 = 19.5 μg m-3; B3 = 68.1 μg m-3). PM10-bound elements varied significantly between microenvironments in all dwellings. Lower molecular weight polycyclic aromatic hydrocarbons (PAHs) were found to be between 14 and 72 times higher than high molecular weight PAHs in bedrooms. The mean volume-normalised OP determined by the dithiothreitol and ascorbic acid assays varied within the 0.01–0.38 nmol min-1 m-3 and 0.03–0.53 nmol min-1 m-3 ranges, respectively. Quinones, oxy-aromatic, aromatic and alkyl-aromatic compounds stood out in bedrooms. Strong and significantly positive relationship between OP and black carbon, Cu and Br were observed, indicating common redox active species mainly associated with traffic emissions. Sr, Fe, Zn and Zr presented higher concentrations in dwelling 3, exhibiting excellent positive correlation with OP, indicating that the Sahara dust intrusion recorded in that house may have contributed to the formation of more redox active species thought
to drive antioxidant depletion responses.
Seasonal variation in exposure to particulate matter among children attending different levels of education: comparison of two dosimetry models
Publication . Charres, Isabella; Cipoli, Yago Alonso; Furst, Leonardo; Vicente, Estela D.; Casotti Rienda, Ismael; Lazaridis, Mihalis; Feliciano, Manuel; Alves, Célia
Exposure to particulate matter (PM) has been associated with several adverse health outcomes. Studies indicate that children may be exposed to much higher concentrations of PM at school than in other environments. There exists very little data on the deposited dose of PM while children attend classes. This study was carried out in a school located near an industrial complex in Portugal and attended by children aged 3–12 years. Indoor PM10, PM2.5 and PM1 were measured over two seasons in classrooms representing different school year groups. Particle deposition fractions in the respiratory tract, as well as the deposited doses, were calculated using the Multiple-Path Particle Dosimetry (MPPD) and the Exposure Dose Model (ExDoM2). Both models were implemented assuming an 8-hour exposure scenario to represent the school day. In general, differences in PM concentrations were observed depending on room occupancy periods and season. The highest mean PM2.5 concentration was recorded in winter when the classroom was vacant (23.7 ± 20.5 μg m-3), while the highest mean PM10 level was observed in spring during school hours (61.7 ± 24.2 μg m-3). Regardless of the dosimetry model, the highest deposition of PM10 and PM2.5 was in the upper region, while the lowest was in the tracheobronchial (TB) region. The results indicate that deposited dose and deposition fraction in spring may be more harmful to pupils’ health than in winter. PM10 presented the highest doses, ranging from 54.2 to 128 μg and from 83.9 to 185 μg, according to MPPD and ExDoM2 estimates, respectively.
First exploratory study of gaseous pollutants (NO2, SO2, O3, VOCs and carbonyls) in the Luanda metropolitan area by passive monitoring
Publication . Alves, Célia; Feliciano, Manuel; Gama, Carla; Vicente, Estela D.; Furst, Leonardo; Leitão, Anabela
An air quality monitoring campaign for gaseous pollutants using passive sampling techniques was carried out, for the first time, at 25 locations in the metropolitan area of Luanda, Angola, in June 2023. Concentrations of benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes, SO2 and NO2 were generally higher in locations more impacted by traffic. Benzene, SO2 and NO2 levels did not exceed the World Health Organisation guidelines. Ozone concentrations surpassed those documented for other African regions. Higher O3 formation potential values were recorded at heavy-trafficked roads. The top 5 species with potential for ozone formation were m,pxylene, toluene, formaldehyde, propionaldehyde and butyraldehyde. The Mulenvos landfill presented a distinctive behaviour with a very low toluene/benzene ratio (0.47), while values close to 5 were obtained at traffic sites. The maximum levels of α-pinene, D-limonene, formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, butyraldehyde, benzaldehyde, valeraldehyde, hexaldehyde and crotonaldehyde were recorded at the landfill. The formaldehyde/acetaldehyde ratio ranged from 0.40 at the Mulenvos landfill to 3.0, averaging 1.8, which is a typical value for urban atmospheres. Acetaldehyde/propionaldehyde ratios around 0.4–0.6 were found in locations heavily impacted by traffic, whereas values between 0.7 and 1.2 were observed in green residential areas and in places with more rural characteristics. All hazard quotient (HQ) values were in the range from 1 to 10, indicating moderate risk of developing non-cancer diseases. The exception was the Mulenvos landfill for which a HQ of 11 was obtained (high risk). The cancer risks exceeded the tolerable level of 1 × 10-4, with special concern for the landfill and sites most impacted by traffic. A mean lifetime cancer risk of 9 × 10-4 was obtained. The cancer risk was mainly due to naphthalene, which accounted, on average, for 94.6% of the total.
A Reliable Molecular Diagnostic Tool for CA90 (Castanea sativa × Castanea crenata) Hybrid Identification Through SSR
Publication . Yussif, Toufiq Soale; Cruz, Nadine Evora da; Coelho, Valentim; Gouveia, Maria Eugénia; Choupina, Altino Branco
Chestnut trees are an essential source of both food and timber. However, the severe threats from invasive pests and diseases compromise their existence and productivity. In Europe, chestnut hybridization programs have been initiated to produce resilient rootstocks in response to ink disease. However, the gap in the identification of these hybrid plants is typically based on field observations and morphological features and remains a challenge. Our study presents a marker set for distinguishing between chestnut hybrid CA90 (Castanea sativa × Castanea crenata), a hybrid with demonstrated resistance to Phytophthora cinnamomi, and other varieties using microsatellite (SSR) markers and bioinformatics tools. We used 35 chestnut samples, including three CA90 controls, hybrids sampled within Portugal, with an aim to define the profiles of the chestnut hybrids and varieties in this study based on band patterns and SSR motifs. We selected and modified nine distinct SSR primers with null allelic features from 43 already developed simple sequence repeat (SSR) markers. PCR amplification and agarose gel electrophoresis were used to amplify and visualize the DNA bands. To confirm genetic variations, 27 amplified bands were sequenced by Sanger sequencing. This analysis identified 31 SSRs across 22 SSR-containing sequences, with trinucleotide (67.74%) repeats being the most common, followed by repeats of dinucleotide (22.58%), mononucleotide (6.45%), and hexanucleotide (3.23%). A total of 18 alleles were observed for the nine loci. The alleles ranged from one to three per locus for the 35 samples. The novel locus CP4 could only be found in CA90 hybrids. This tool can aid in identifying and selecting disease-resistant hybrids, thereby contributing to chestnut production and management strategies.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
CEEC IND5ed
Funding Award Number
2022.00399.CEECIND/CP1720/CT0012