Repository logo
 
Loading...
Project Logo
Research Project

Research Center for Chemical Processes and Forest Products

Authors

Publications

Application of mixed integer nonlinear programming for system identification
Publication . Fernandes, Natércia C.P.; Fernandes, Florbela P.; Romanenko, Andrey
This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSFilter (Branch and Bound based on a Multistart Coordinate Search Filter) global optimization algorithm to determine the order and the parameters of the resulting model, taking into account not only the model-plant mismatch but also the model complexity and the resulting computation time. The application of the method is illustrated with a simulated example of a chemical process unit. © 2020 American Institute of Physics Inc.. All rights reserved.
Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality
Publication . Barbosa, Catarina; Ramalhosa, Elsa; Vasconcelos, Isabel; Reis, Marco; Mendes-Ferreira, Ana
The use of yeast starter cultures consisting of a blend of Saccharomyces cerevisiae and non-Saccharomyces yeasts has increased in recent years as a mean to address consumers’ demands for diversified wines. However, this strategy is currently limited by the lack of a comprehensive knowledge regarding the factors that determine the balance between the yeast-yeast interactions and their responses triggered in complex environments. Our previous studies demonstrated that the strain Hanseniaspora guilliermondii UTAD222 has potential to be used as an adjunct of S. cerevisiae in the wine industry due to its positive impact on the fruity and floral character of wines. To rationalize the use of this yeast consortium, this study aims to understand the influence of production factors such as sugar and nitrogen levels, fermentation temperature, and the level of co-inoculation of H. guilliermondii UTAD222 in shaping fermentation and wine composition. For that purpose, a Central Composite experimental Design was applied to investigate the combined effects of the four factors on fermentation parameters and metabolites produced. The patterns of variation of the response variables were analyzed using machine learning methods, to describe their clustered behavior and model the evolution of each cluster depending on the experimental conditions. The innovative data analysis methodology adopted goes beyond the traditional univariate approach, being able to incorporate the modularity, heterogeneity, and hierarchy inherent to metabolic systems. In this line, this study provides preliminary data and insights, enabling the development of innovative strategies to increase the aromatic and fermentative potential of H. guilliermondii UTAD222 by modulating temperature and the availability of nitrogen and/or sugars in the medium. Furthermore, the strategy followed gathered knowledge to guide the rational development of mixed blends that can be used to obtain a particular wine style, as a function of fermentation conditions.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UID/EQU/00102/2019

ID