Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Modelação matemática de epidemiasPublication . Plácido, Sara C.M.; Silva, João; Balsa, Carlos; Nunes, Alcina; Barros, ElisaUma epidemia é um problema de saúde pública sendo importante modelar a sua propagação para que se possa atuar sobre ela. Para realizar a modelação existem duas grandes classes de com origem no modelo predador-presa (Lotka-Volterra), utilizam equações diferenciais para modelar o (de)crescimento das populações envolvidas. Estes modelos são o modelo Suscetíveis-Infetados (SI) e o modelo Suscetíveis-Infetados- -Recuperados (SIR) nas suas três variantes, simples, baseado em equações algébricas e com atraso, que, neste trabalho, foram implementados em Matlab para modelar casos propostos na literatura. Os resultados permitem compreender a evolução geral de uma epidemia em função de certos fatores determinantes como é o caso do período de contágio e da taxa de contágio da doença. Os modelos estocásticos utilizam informação estatística sobre a população afetada para gerar padrões que facilitam a sua análise. Neste estudo, foram aplicados modelos estocásticos, designados de modelos de duração não paramétrica, para modelar a propagação da gripe em Portugal entre novembro de 2010 e maio de 2011. Conclui-se que existem certas características populacionais, como os hábitos tabágicos, que potenciam o risco de contágio. Verifica-se, também, que outras características, como o género ou meio de transporte habitualmente utilizado, não influenciaram a tendência para o contágio, no período considerado.
- Clustering techniques applied on cross-cectional unemployment dataPublication . Balsa, Carlos; Nunes, Alcina; Barros, ElisaUsing a cross-section database that observes the Portuguese labour market in two different phases of the business cycle, the present paper aims to address the issue of the segmentation of the Portuguese labour market taking into account the heterogeneity resulting from different unemployment characteristics observed along the Portuguese geographical space and applying two optimization clustering methods: the k-means and the spectral methods. The k-means is a traditional optimisation clustering method applied to cluster data observations. Spectral clustering is an alternative method based on the computation of the dominant eigenvalue of a matrix related with the distance among data points. The results obtained by the two methods are not identical but are very close and show that, apart the economic phase of the cycle, Portugal presents two very different profiles of registered unemployment. One of them can be considered problematic because it presents a higher percentage of unemployed women, long duration unemployed and unemployed with low levels of formal education - these are the groups that present more difficulties in the labour market and for which is more difficult to find a job after losing one. The segmentation of the labour market is a reality and the labour market is not adjusting to the business cycle.
- A comparative study of two optimization clustering techniques on unemployment dataPublication . Barros, Elisa; Nunes, Alcina; Balsa, CarlosAn important strategy for data classification consists in organising data points in clusters. The $k$-means is a traditional optimisation method applied to cluster data points. Using a labour market database, we suggest the application of an alternative method based on the computation of the dominant eigenvalue of a matrix related with the distance among data points. This approach presents results consistent with the results obtained by the k-means.
- A comparative study of two optimization clustering techniques on unemployment dataPublication . Barros, Elisa; Nunes, Alcina; Balsa, CarlosAn important strategy for data classi cation consists in organising data points in clusters. The k-means is a traditional optimisation method applied to cluster data points. Using a labour market database, we suggest the application of an alternative method based on the computation of the dominant eigenvalue of a matrix related with the distance among data points. This approach presents results consistent with the results obtained by the k-means.
- Optimization clustering techniques on register unemployment dataPublication . Balsa, Carlos; Nunes, Alcina; Barros, ElisaAn important strategy for data classification consists in organising data points in clusters. The k-means is a traditional optimisation method applied to cluster data points. Using a labour market database, aiming the segmentation of this market taking into account the heterogeneity resulting from different unemployment characteristics observed along the Portuguese geographical space, we suggest the application of an alternative method based on the computation of the dominant eigenvalue of a matrix related with the distance among data points. This approach presents results consistent with the results obtained by the k-means.