Escola Superior de Tecnologia e Gestão
Permanent URI for this community
Browse
Browsing Escola Superior de Tecnologia e Gestão by Sustainable Development Goals (SDG) "03:Saúde de Qualidade"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Classical Versus Wellness Thermalism: The Case of Portuguese Thermal Establishments Before and After the COVID-19 PandemicPublication . Alcina Nunes; Jéssica Alves; Estelle Gonçalves; Ana Margarida Pereira; Maria José Alves; Nunes, Alcina; Alves, Maria JoséThermal/mineral springs are one of the fastest-growing subcategories of wellness tourism. Indeed, it is an activity that has steadily increased in all of Europe’s developed economies over the last few decades. The pandemic has raised awareness of the importance of healthy lifestyles and has subsequently led to a surge in consumption of experiences and travel, somehow motivated by wellness. This study analyses the evolution of thermal users’ alternation between wellness and classical thermalism in Portugal. The objective is achieved by applying exploratory and cluster data analysis to a Portuguese administrative database containing the number of user registers and revenues generated from 2012 to 2022. During this period, the wellness registers increased in most thermal establishments compared to the classic records, even if service diversification may be found in most thermal establishments. Still, the financial value added by wellness consumers does not seem to follow the previously observed shift. The establishments with more classical registers are still the ones that are able to generate the highest income per person.
- Colorectal Polyp Segmentation: Impact of Combining Different Datasets on Deep Learning Model PerformancePublication . Araujo, Sandro Luis de; Scheeren, Michel Hanzen; Aguiar, Rubens Miguel Gomes; Mendes, Eduardo; Franco, Ricardo Augusto Pereira; Paula Filho, Pedro Luiz deColorectal cancer is a major health concern, ranking as one of the most common and deadly forms of cancer. It typically begins as polyps, which are abnormal growths in the intestinal mucosa. Identifying and removing these polyps through colonoscopy is a crucial preventative measure. However, even experienced professionals can overlook some polyps during examinations. In this context, segmentation algorithms can assist medical professionals by identifying areas in an image that correspond to a polyp. These algorithms, which rely on deep learning, require extensive image datasets to effectively learn how to identify and segment polyps. This study aimed to identify public colonoscopy image datasets that contain polyps and to examine how combining these datasets might affect the performance of a deep learning-based segmentation algorithm. After selecting the datasets and defining their combinations, we trained a segmentation algorithm on each combination. The evaluation of the trained models showed that merging datasets can enhance model generalization, with increases of up to 0.242 in the dice coefficient and 0.256 in the Intersection over Union (IoU). These improvements could lead to higher diagnostic accuracy in clinical settings, enhancing efforts to prevent colorectal cancer.
- D.R.E.A.M. App to Promote the Mental Health in Higher Education StudentsPublication . Vaz, Clara B.; Pais, Clarisse; Pinheiro, MarcoThis paper presents the development process of the mobile App D.R.E.A.M., Design-thinking to Reach-out, Embrace and Acknowledge Mental health, which is a tool for self-assessment and self-care in promoting the mental health of higher education students. In Portugal, the program for promoting Mental Health in higher education advocates the development and use of digital tools, such as apps and/or social networks and platforms, aimed at promoting wellbeing and with the potential for use to be more accessible to higher education students. The objective of this app is to promote the mental health and wellbeing of higher educa- tion students. Design Thinking was used as the methodology for building the app, which was developed using a combination of low-code/no-code tools, Flutter/Dart coding, and Google’s Firebase capabilities and database functionalities. In the first semester of the 2023/2024 academic year, 484 students downloaded the app, and 22 emails were received for psychological consultations. A dynamic update of the app is required, with modules on time management and study organization, struc- tured physical activity programs, development of socio-entrepreneurial skills, and vocational area.
- Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning TechniquesPublication . Mendes, João; Moso, Juliet; Berger, Guido; Lima, José; Costa, Lino; Guessoum, Zahia; Pereira, Ana I.Olive trees play a crucial role in the global agricultural landscape, serving as a primary source of olive oil production. However, olive trees are susceptible to several diseases, which can significantly impact yield and quality. This study addresses the challenge of improving the diagnosis of diseases in olive trees, specifically focusing on aculus olearius and Olive Peacock Spot diseases. Using a novel hybrid approach that combines deep learning and machine learning methodologies, the authors aimed to optimize disease classification accuracy by analyzing images of olive leaves. The presented methodology integrates Local Binary Patterns (LBP) and an adapted ResNet50 model for feature extraction, followed by classification through optimized machine learning models, including Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and Random Forest (RF). The results demonstrated that the hybrid model achieved a groundbreaking accuracy of 99.11%, outperforming existing models. This advancement underscores the potential of integrated technological approaches in agricultural disease management and sets a new benchmark for the early and accurate detection of foliar diseases.