Browsing by Author "Yahia, Youssef"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing the 3D Position of a Car with a Single 2D Camera Using Siamese NetworksPublication . Yahia, Youssef; Lopes, Júlio Castro; Bezerra, Eduardo; Rodrigues, Pedro João; Lopes, Rui PedroUsing computer vision for the classification of an object’s 3D position using a 2D camera is a topic that has received some attention from researchers over the years. Visual data is interpreted by the computer to recognize the objects found. In addition, it is possible to infer their orientation, evaluating their spatial arrangement, rotation, or alignment in the scene. The work presented in this paper describes the training and selection of a siamese neural network for classifying the 3D orientation of cars using 2D images. The neural network is composed of an initial phase for feature selection through convolutional neural networks followed by a dense layer for embedding generation. For feature selection, four architectures were tested: VGG16, VGG19, ResNet18 and ResNet50. The best result of 95.8% accuracy was obtained with the VGG16 and input images preprocessed for background removal.
- Computer vision algorithms for 3D object recognition and orientation: a bibliometric studyPublication . Yahia, Youssef; Lopes, Júlio Castro; Lopes, Rui PedroThis paper consists of a bibliometric study that covers the topic of 3D object detection from 2022 until the present day. It employs various analysis approaches that shed light on the leading authors, affiliations, and countries within this research domain alongside the main themes of interest related to it. The findings revealed that China is the leading country in this domain given the fact that it is responsible for most of the scientific literature as well as being a host for the most productive universities and authors in terms of the number of publications. China is also responsible for initiating a significant number of collaborations with various nations around the world. The most basic theme related to this field is deep learning, along with autonomous driving, point cloud, robotics, and LiDAR. The work also includes an in-depth review that underlines some of the latest frameworks that took on various challenges regarding this topic, the improvement of object detection from point clouds, and training end-to-end fusion methods using both camera and LiDAR sensors, to name a few.
