Browsing by Author "Shinibekova, Assem A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assisted hydrothermal carbonization of agroindustrial byproducts as effective step in the production of activated carbon catalysts for wet peroxide oxidation of micro-pollutantsPublication . Díaz de Tuesta, Jose Luis; Saviotti, Marcus Chamahum; Roman, Fernanda; Pantuzza, Gabriel F.; Sartori, Hiram J.F.; Shinibekova, Assem A.; Kalmakhanova, Marzhan; Massalimova, Bakytgul Kabykenovna; Pietrobelli, Juliana Martins Teixeira; Lenzi, Giane G.; Gomes, HelderThis work deals with the valorisation of bagasse of sugarcane – BC, bagasse of malt – BM and seed of chia – SC, through its transformation into pyrochars, hydrochars and activated carbons (ACs) by pyrolysis, hydrothermal carbonization (HTC) and sequential HTC and pyrolysis, respectively. The HTC process was carried out in the presence of H2O, FeCl3 and H2SO4 solutions. The materials resulting by HTC in the presence of FeCl3 revealed the highest burn-off, but the contents of carbon released into the liquid phase, measured as total organic carbon, and to the gaseous phase, determined by carbon balance, depend strongly on the carbon precursor. In this sense, BC generates more volatile organic compounds (up to 34% of the initial carbon content), followed by BM (< 15%) and SC (< 5%) in their HTC and pyrolysis (70%). The pyrochars, hydrochars and ACs prepared from BC also show the highest specific surface areas (SBET < 447 m2⋅g-1) when compared to the specific surface areas of the materials prepared from BM and SC. The carbon-based materials prepared with FeCl3 show the highest catalytic activity, but iron leaching into solution is observed. On the other hand, the materials prepared with H2SO4 show high activity, enabling its application in successive cycles and the complete degradation of caffeine in concentrations ranging from 1 to 100 mg⋅L-1, after 5–60 min of reaction.
- Performance and modeling of Ni(II) adsorption from low concentrated wastewater on carbon microspheres prepared from tangerine peels by FeCl3-assisted hydrothermal carbonizationPublication . Díaz de Tuesta, Jose Luis; Roman, Fernanda; Marques, Vitor da Costa; Silva, Adriano S.; Silva, Ana P. F.; Bosco, Tatiane; Shinibekova, Assem A.; Aknur, Sadenova; Kalmakhanova, Marzhan; Massalimova, Bakytgul Kabykenovna; Arrobas, Margarida; Silva, Adrián; Gomes, HelderThe presence of heavy metals in the environment as a consequence of human activity is an issue that has caught the attention of researchers to find wastewater treatment solutions, such as adsorption. In this work, hydrochars and activated carbon microspheres are prepared from tangerine peels as carbon precursor and FeCl3 as activating and structure-directing agent in the hydrothermal carbonization, allowing to obtain hydrochar microspheres ranging from 50 to 3615 nm. In addition, a pyrochar was prepared by pyrolysis of the same precursor. The activated carbon shows the highest surface area (SBET up to 287 m2 g–1), but the basicity of the pyrochar (1.83 mmol g-1, SBET = 104 m2 g–1) was determinant in the adsorption of Ni, being considered the carbon-based material with the highest uptake capacity of Ni. Isotherm and kinetic adsorption of Ni on the most representative activated carbon microsphere, pyrochar and hydrochar microsphere are assessed by 10 and 7 models, respectively.
