Browsing by Author "Parejo, Melanie"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
- Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPsPublication . Momeni, Jamal; Parejo, Melanie; Nielsen, Rasmus O.; Langa, Jorge; Montes, Iratxe; Papoutsis, Laetitia; Farajzadeh, Leila; Bendixen, Christian; Căuia, Eliza; Charrière, Jean Daniel; Coffey, Mary F.; Costa, Cecilia; Dall'Olio, Raffaele; De la Rúa, Pilar; Dražić, Marica Maja; Filipi, Janja; Galea, Thomas; Golubovski, Miroljub; Gregorc, Aleš; Grigoryan, Karina; Hatjina, Fani; Ilyasov, Rustem; Ivanova, Evgeniya Neshova; Janashia, Irakli; Kandemir, Irfan; Karatasou, Aikaterini; Kekecoglu, Meral; Kezic, Nikola; Matray, Enikö Sz; Mifsud, David; Moosbeckhofer, Rudolf; Nikolenko, Alexei G.; Papachristoforou, Alexandros; Petrov, Plamen; Pinto, M. Alice; Poskryakov, Aleksandr V.; Sharipov, Aglyam Y.; Siceanu, Adrian; Soysal, M. Ihsan; Uzunov, Aleksandar; Zammit Mangion, Marion; Vingborg, Rikke; Bouga, Maria; Kryger, Per; Meixner, Marina D.; Estonba, AndoneWith numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.
- Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid dronesPublication . Wragg, David; Eynard, Sonia E.; Basso, Benjamin; Canale‐Tabet, Kamila; Labarthe, Emmanuelle; Bouchez, Olivier; Bienefeld, Kaspar; Bieńkowska, Małgorzata; Costa, Cecilia; Gregorc, Aleš; Kryger, Per; Parejo, Melanie; Pinto, M. Alice; Bidanel, Jean‐Pierre; Servin, Bertrand; Le Conte, Yves; Vignal, AlainHoney bee subspecies originate from specific geographical areas in Africa, Europe and the Middle East, and beekeepers interested in specific phenotypes have imported genetic material to regions outside of the bees' original range for use either in pure lines or controlled crosses. Moreover, imported drones are present in the environ-ment and mate naturally with queens from the local subspecies. The resulting ad-mixture complicates population genetics analyses, and population stratification can be a major problem for association studies. To better understand Western European honey bee populations, we produced a whole genome sequence and single nucleotide polymorphism (SNP) genotype data set from 870 haploid drones and demonstrate its utility for the identification of nine genetic backgrounds and various degrees of admixture in a subset of 629 samples. Five backgrounds identified correspond to sub-species, two to isolated populations on islands and two to managed populations. We also highlight several large haplotype blocks, some of which coincide with the position of centromeres. The largest is 3.6 Mb long and represents 21% of chromosome 11, with two major haplotypes corresponding to the two dominant genetic backgrounds identified. This large naturally phased data set is available as a single vcf file that can now serve as a reference for subsequent populations genomics studies in the honey bee, such as (i) selecting individuals of verified homogeneous genetic backgrounds as references, (ii) imputing genotypes from a lower-density data set generated by an SNP- chip or by low- pass sequencing, or (iii) selecting SNPs compatible with the re-quirements of genotyping chips.
- Desenvolvimento de painéis de SNPs ultra-reduzidos a partir de dados de sequenciaçãoPublication . Henriques, Dora; Parejo, Melanie; Vignal, Alain; Wragg, David; Wallberg, Andreas; Webster, Matthew T.; Pinto, M. AliceA abelha melífera, Apis mellifera L., tem um papel fundamental no funcionamento dos ecossistemas e na produção de alimentos, no entanto, está sujeita a diversas ameaças. Entre outras, a introdução em larga escala de raças comerciais (normalmente com ancestralidade da Europa Oriental ou linhagem C) leva a uma hibridação introgressiva quebrando os complexos de genes adaptados localmente, os quais são cruciais para uma sustentabilidade a longo prazo das populações nativas. Esta ameaça tem sido alvo de preocupação na Europa Ocidental onde a subespécie nativa A. m. mellifera está seriamente ameaçada pela introgressão e a outra, a abelha ibérica, A. m. iberiensis, pode vir a ter o mesmo destino. Foram desenvolvidos quatro painéis ultra-reduzidos do marcador molecular designado polimorfismo de nucleótido simples (SNPs; 37-40 SNPs, cada) que podem ser usados de forma independente ou combinada para estimar introgressão genética na abelha ibérica. Como base usamos o genoma completo de 176 indivíduos (117 A. m. iberiensis e 59 linhagem C). A seleção dos SNPs foi feita usando o índice de diferenciação (FST), sendo apenas utilizados os SNPs fixos (FST=1). Adicionalmente, avaliamos os efeitos do tamanho da amostra e da amostragem geograficamente confinada no número de SNPs fixos. Verificamos que existe um enviesamento quando o tamanho da amostra é ≤10 e quando a amostragem representa uma pequena porção da diversidade genética. Finalmente, demonstramos que os painéis ultra-reduzidos, individualmente ou combinados, são rigorosos na estimação da introgressão da linhagem C em A. m. iberiensis, apresentando-se como uma ferramenta de grande utilidade na monitorização da integridade genética desta subespécie.
- Developing reduced SNP assays from whole-genome sequence data to estimate C-lineage introgression in the Iberian honeybee (Apis mellifera iberiensis)Publication . Henriques, Dora; Parejo, Melanie; Vignal, Alain; Wragg, David; Wallberg, Andreas; Webster, Matthew T.; Pinto, M. AliceThe honeybee has been subject to a growing number of threats. In Western Europe one such threat is large-scale introductions of commercial strains (C-lineage), which is leading to introgressive hybridization and even the local extinction of native populations (M-lineage). Here, we developed reduced assays of highly informative SNPs from 176 whole genomes to estimate C-lineage introgression in ;M-lineage subspecies Apis mellifera iberiensis. We started by evaluating the effects of sample size and sampling a geographically restricted area on the number of highly informative SNPs. We demonstrated that a bias in the number of fixed SNPs (FST=1) is introduced when the sample size is small (N≤10) and when sampling only captures a small fraction of a population’s genetic diversity. These results underscore the importance of having a representative sample when developing reliable reduced SNP assays for organisms with complex genetic patterns. We used a training dataset to design four independent SNP assays selected from pairwise FST between the Iberian and C-lineage honeybees. The designed assays, which were validated in holdout and simulated hybrid datasets, proved to be highly accurate and can be readily used for monitoring populations not only in the native range of A. m. iberiensis in Iberia but also in the introduced range in the Balearic islands, Macaronesia, and South America, in a time- and cost-effective manner. While our approach used the Iberian honeybee as model system, it has a high value in a wide range of scenarios for the monitoring and conservation of potentially hybridized domestic and wildlife populations.
- Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (Apis mellifera iberiensis)Publication . Henriques, Dora; Parejo, Melanie; Vignal, Alain; Wragg, David; Wallberg, Andreas; Webster, Matthew T.; Pinto, M. AliceThe most important managed pollinator, the honeybee (Apis mellifera L.), has been subject to a growing number of threats. In western Europe, one such threat is large- scale introductions of commercial strains (C- lineage ancestry), which is leading to introgressive hybridization and even the local extinction of native honeybee populations (M- lineage ancestry). Here, we developed reduced assays of highly informative SNPs from 176 whole genomes to estimate C- lineage introgression in the most diverse and evolutionarily complex subspecies in Europe, the Iberian honeybee (Apis mellifera iberiensis). We started by evaluating the effects of sample size and sampling a geographically restricted area on the number of highly informative SNPs. We demonstrated that a bias in the number of fixed SNPs (FST = 1) is introduced when the sample size is small (N ≤ 10) and when sampling only captures a small fraction of a population’s genetic diversity. These results underscore the importance of having a representative sample when developing reliable reduced SNP assays for organisms with complex genetic patterns. We used a training data set to design four independent SNP assays selected from pairwise FST between the Iberian and C- lineage honeybees. The designed assays, which were validated in holdout and simulated hybrid data sets, proved to be highly accurate and can be readily used for monitoring populations not only in the native range of A. m. iberiensis in Iberia but also in the introduced range in the Balearic islands, Macaronesia and South America, in a time- and cost- effective manner. While our approach used the Iberian honeybee as model system, it has a high value in a wide range of scenarios for the monitoring and conservation of potentially hybridized domestic and wildlife populations.
- Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum SpecimensPublication . Parejo, Melanie; Wragg, David; Henriques, Dora; Charrière, Jean Daniel; Estonba, Andone; Parejo M.Historical specimens in museum collections provide opportunities to gain insights into the genomic past. For the Western honey bee, Apis mellifera L., this is particularly important because its populations are currently under threat worldwide and have experienced many changes in management and environment over the last century. Using Swiss Apis mellifera mellifera as a case study, our research provides important insights into the genetic diversity of native honey bees prior to the industrial-scale introductions and trade of non-native stocks during the 20th century-the onset of intensive commercial breeding and the decline of wild honey bees following the arrival of Varroa destructor. We sequenced whole-genomes of 22 honey bees from the Natural History Museum in Bern collected in Switzerland, including the oldest A. mellifera sample ever sequenced. We identify both, a historic and a recent migrant, natural or human-mediated, which corroborates with the population history of honey bees in Switzerland. Contrary to what we expected, we find no evidence for a significant genetic bottleneck in Swiss honey bees, and find that genetic diversity is not only maintained, but even slightly increased, most probably due to modern apicultural practices. Finally, we identify signals of selection between historic and modern honey bee populations associated with genes enriched in functions linked to xenobiotics, suggesting a possible selective pressure from the increasing use and diversity of chemicals used in agriculture and apiculture over the last century.
- Empirical comparison of microsatellite and SNP markers to estimate introgression in Apis mellifera melliferaPublication . Parejo, Melanie; Henriques, Dora; Pinto, M. Alice; Soland-Reckeweg, Gabriele; Neuditschko, MarkusThe genetic identity of the dark European honey bee, Apis mellifera mellifera is currently under pressure throughout most of its native range due to large scale commercial trade and replacement with honey bees of mainly Eastern European ancestry (C-lineage: Apis mellifera carnica and Apis mellifera ligustica). To counteract this process, numerous conservation efforts for the protection of native honey bees are sprouting across Europe. For the management of such protected areas and conservation breeding purposes, honey bee subspecies have been routinely identified through wing morphology and through DNA-hybrid tests using microsatellite markers. Currently, new methods are evolving including rapid innovations in single-nucleotide polymorphism (SNP) array technology and high-throughput sequencing. Here, we aim to quantify potential marker-specific biases of hybrid tests and give recommendations for applications in honey bee conservation management. Using an empirical dataset, we first assessed the accuracy of a recently developed reduced SNP panel to estimate C-lineage introgression in A. m. mellifera compared to whole-genome sequence (WGS) data. Using another independent data set, we estimated the differences in admixture proportions between the currently applied hybrid test based on microsatellites and the novel SNP test. We demonstrate that the SNP-based test which contains highly ancestry-informative markers is very efficient to estimate genome-wide ancestry. Furthermore, we report discrepancies between microsatellite and SNP-based admixture proportions. For conservation management, we, therefore, recommend the implementation of SNP-based hybrid tests to maintain high genetic variation within the breeding population, while minimizing influence of introduced honey bees.
- Evaluation of suppressed mite reproduction (Smr) reveals potential for varroa resistance in european honey bees (apis mellifera l.)Publication . Mondet, Fanny; Parejo, Melanie; Meixner, Marina D.; Costa, Cecilia; Kryger, Per; Andonov, Sreten; Servin, Bertrand; Basso, Benjamin; Bieńkowska, Małgorzata; Bigio, Gianluigi; Căuia, Eliza; Cebotari, Valentina; Dahle, Bjørn; Dražić, Marica Maja; Hatjina, Fani; Kovačić, Marin; Kretavicius, Justinas; Lima, Ana S.; Panasiuk, Beata; Pinto, M. Alice; Uzunov, Aleksandar; Wilde, Jerzy; Büchler, RalphIn the fight against the Varroa destructor mite, selective breeding of honey bee (Apis mellifera L.) populations that are resistant to the parasitic mite stands as a sustainable solution. Selection initiatives indicate that using the suppressed mite reproduction (SMR) trait as a selection criterion is a suitable tool to breed such resistant bee populations. We conducted a large European experiment to evaluate the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee genotypes with their local mite parasites. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Simulation results indicate that it is necessary to examine at least 35 single-infested cells to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores indicating that this trait is present within the European honey bee populations. The trait is highly variable between colonies and some countries, but no major differences could be identified between countries for a given genotype, or between genotypes in different countries. This study shows the potential to increase selective breeding efforts of V. destructor resistant populations.
- Genome-wide scans between two honeybee populations reveal putative signatures of human-mediated selectionPublication . Parejo, Melanie; Wragg, David; Henriques, Dora; Vignal, Alain; Neuditschko, MarkusAnimal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics. Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations.
- High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based toolPublication . Henriques, Dora; Browne, Keith A.; Barnett, Mark W.; Parejo, Melanie; Kryger, Per; Freeman, Tom C.; Muñoz, Irene; Garnery, Lionel; Highet, Fiona; Jonhston, J. Spencer; McCormack, Grace P.; Pinto, M. AliceThe natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.