Browsing by Author "Oliveira, Rafael Augusto de"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Reconhecimento facial com super-resolução: uma abordagem utilizando redes generativas e Joint-LearnPublication . Oliveira, Rafael Augusto de; Rodrigues, Pedro João; Candido Junior, Arnaldo; Paula Filho, Pedro Luiz deCâmeras de monitoramento são largamente utilizadas para supervisionar estabelecimentos, de forma a coibir atos de violência. Um dos modos de melhorar esse sistema é pelo reconhecimento das pessoas que circulam nesse espaço, preferencialmente pelo rosto dos indivíduos. Um desafio existente é reconhecer os rostos quando as condições de imagem são adversas, seja pela utilização de equipamentos de baixa qualidade ou pela distância entre o sujeito e a câmera, impactando assim nas taxas de acerto dos sistemas de reconhecimento. Para tal, técnicas de aumento de resolução e melhoria na qualidade das imagens podem ser aplicadas antes de realizar o reconhecimento da face, de forma a melhorar a acurácia da última. Dentre essas técnicas de Super-Resolução, o atual estado da arte dá-se pelo uso de Redes Adversárias Generativas (GAN). No uso conjunto de Super-Resolução com reconhecimento de faces, uma opção que se mostrou promissora é o treinamento das redes de Super-Resolução e Reconhecimento Facial de forma conjunta, de modo a direcionar a rede no aprendizado de características de aumento de qualidade de imagem que conduzam a uma melhor acurácia em reconhecer os indivíduos. Neste trabalho, realizamos o treinamento conjunto de Super-Resolução e Reconhecimento de Faces, sendo a primeira uma rede Generativa e a última uma ResNet50, treinados com o auxílio de uma rede Discriminativa, nos moldes do treinamento de redes GAN, de forma a testar a eficácia desse sistema no reconhecimento dos indivíduos em imagens de baixa qualidade. As imagens de resolução aumentada geradas pela rede foram satisfatórias, mas não conseguimos realizar a convergência do reconhecimento das faces em tempo hábil. Com o presente trabalho, desejamos que os achados em nossos experimentos sirvam de insumo para mais pesquisas nesse tópico. Os códigos estão disponíveis publicamente em https://github.com/OliRafa/SRFR-GAN
- Super-resolution face recognition: an approach using generative adversarial networks and joint-learnPublication . Oliveira, Rafael Augusto de; Scheeren, Michel Hanzen; Rodrigues, Pedro João; Junior, Arnaldo Candido; Paula Filho, Pedro LuizFace Recognition is a challenging task present in different applications and systems. An existing challenge is to recognize faces when imaging conditions are adverse, for example when images come from low-quality cameras or when the subject and the camera are far apart, thus impacting the accuracy of these recognizing systems. Super-Resolution techniques can be used to improve both image resolution and quality, hopefully improving the accuracy of the face recognition task. Among these techniques, the actual state-of-the-art uses Generative Adversarial Networks. One promising option is to train Super-Resolution and Face Recognition as one single network, conducting the network to learn super resolution features that will improve its capability when recognizing faces. In the present work, we trained a super resolution face recognition model using a jointly-learn approach, combining a generative network for super resolution and a ResNet50 for Face Recognition. The model was trained with a discriminator network, following the generative adversarial training. The images generated by the network were convincing, but we could not converge the face recognition model. We hope that our contributions could help future works on this topic. Code is publicly available at https://github.com/OliRafa/SRFR-GAN.