Browsing by Author "Gouvinhas, Irene"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Exploring the Impact of Ultrasound-Assisted Extraction on the Phytochemical Composition and Bioactivity of Tamus communis L. FruitsPublication . Gouvinhas, Irene; Saavedra, Maria José; Alves, Maria José; Garcia, JulianaThe health benefits of Tamus communis fruits have been associated with their high phenolic content, which comprises several flavonoids. However, the extraction methods might significantly impact these valuable compounds' bioactivity. Therefore, the current study assesses how different extraction techniques affect T. communis extracts' antioxidant, anti-aging, antimicrobial, cytotoxic, anti-inflammatory, and phenolic contents. Conventional method (TCE-CM) and ultrasound-assisted extraction (TCE-UM) were the methods employed. Results: The increased phenolic content of TCE-UM, particularly flavonoids and phenolic acids, was demonstrated to be a contributing factor to its higher biological activity. Key enzymes linked to dermatological conditions, such as elastase, collagenase, hyaluronidase, and tyrosinase, were significantly inhibited by both extracts at 1 mg/mL; TCE-UM showed the highest tyrosinase inhibition (65.61 +/- 5.21%) compared to TCE-CM (21.78 +/- 2.19%). TCE-UM also demonstrated exceptional antibacterial performance, showing notable antibiofilm and metabolic inactivation effects and potent activity against pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans. Both extracts showed concentration-dependent anti-inflammatory properties; TCE-UM had a lower IC50 value (26.46 +/- 2.30%) in nitric oxide inhibition tests, suggesting stronger anti-inflammatory capabilities. These findings underscore the superior bioactivity of TCE-UM and suggest that ultrasonic extraction is a more efficient method for isolating bioactive phenolic compounds from T. communis fruits, presenting promising applications in anti-aging and antimicrobial formulations.
- Exploring the therapeutic potential of Quercus ilex acorn extract in papillomavirus-induced lesionsPublication . Medeiros-Fonseca, Beatriz; Faustino-Rocha, Ana; Pires, Maria João; Neuparth, Maria João; Vala, Helena; Vasconcelos-Nóbrega, Cármen; Gouvinhas, Irene; Barros, Ana Novo; Dias, Maria Inês; Barros, Lillian; Bastos, Margarida M.S.M.; Gonçalves, Lio; Félix, Luís; Venâncio, Carlos; Medeiros, Rui; Costa, Rui Miguel Gil; Oliveira, Paula A.Papillomaviruses (PVs) infections have been documented in numerous animal species across different regions worldwide. They often exert significant impacts on animal health and livestock production. Scientists have studied natural products for over half a century due to their diverse chemical composition, acknowledging their value in fighting cancer. Acorns (Quercus ilex) are believed to have several unexplored pharmacological properties. This study aimed to evaluate the in vivo safety and cancer chemopreventive activity of an infusion extract of Q. ilex in a transgenic mouse model of human PV (HPV)-16, which developed squamous cell carcinomas through a multistep process driven by HPV16 oncogenes. Q. ilex extract was prepared by heating in water at 90°C and then characterized by mass spectrometry. Phenolic compounds from this extract were administered in drinking water to female mice in three different concentrations (0.03, 0.06, and 0.09 g/mL) over a period of 28 consecutive days. Six groups (n = 6) were formed for this study: group 1 (G1, wildtype [WT], water), group 2 (G2, HPV, water), group 3 (G3, WT, 0.09 g/mL), group 4 (G4, HPV, 0.03 g/mL), group 5 (G5, HPV, 0.06 g/ mL), and group 6 (G6, HPV, 0.09 g/mL). Throughout the experiment, humane endpoints, body weight, food intake, and water consumption were recorded weekly. Following the experimental period, all mice were sacrificed, and blood, internal organs, and skin samples were collected. Blood was used to measure glucose and microhematocrit and later biochemical parameters, such as creatinine, urea, albumin, alanine aminotransferase, and total proteins. Histological analysis was performed on skin and organ samples. The administration of Q. ilex extract resulted in a statistically significant increase in relative organ weight among HPV transgenic animals, indicating adaptive biological response to the tested concentrations. Moreover, a reduction in characteristic skin lesions was observed in animals treated with the 0.06 and 0.09 g/mL extract. These results provide a favorable chemopreventive profile for Q. ilex extract at concentrations of 0.06 and 0.09 g/mL. This study highlights the potential of Q. ilex extract as a safe and effective therapeutic strategy against HPV16- associated lesions in transgenic mouse models. The limitation of our study was the durability of transgenic animals. As a more sensitive species, we must always be careful with the durability of the test. We intend to study concentrations of 0.06 and 0.09 g/mL for longer to further investigate their possible effects.
- Sulfur-containing compounds from fungiPublication . Garcia, Juliana; Silva, Jani; Gouvinhas, Irene; Guimarães, Rafaela; Bovolini, Antonio; Saavedra, Maria José; Alves, Maria JoséSulfur contributes greatly to the chemical richness of nature and, due to its unique properties, enables essential biological interactions that no other element can. Sulfur-containing compounds are bioactive/nutraceuticals substances from different sources, including fungi. They comprise sulfur atoms that are cyclically or noncyclically bonded to a cyanate group or a carbon atom. Sulfur-containing compounds, already identified in various mushrooms species, include compounds such as ergothioneine (EGT), glutathione (GSH), and lenthionine (LT). These compounds exhibit important therapeutic properties such as antioxidant, antiinflammatory, anti-neurodegenerative, and antiplatelet characteristics potentially useful in the treatment of a variety of disorders and diseases, including neurodegenerative and cardiovascular diseases and even diabetes. The purpose of this chapter is to explain the generally recognized sulfur-containing compounds from fungi covering the distribution in species, and genera, as well as the extraction and identification by contemporary analytical techniques. The biosynthetic elements of fungal sulfur compounds, as well as the state of art concerning their biological activities, are also discussed.
