Browsing by Author "Arca, Vinicius C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Quantificação de açúcares com uma língua eletrónica: calibração multivariada com seleção de sensoresPublication . Arca, Vinicius C.; Dias, L.G.; Bona, EvandroEste trabalho incide na análise dos açúcares majoritários nos alimentos (glucose, frutose e sacarose) com uma língua eletrónica potenciométrica através de calibração multivariada com seleção de sensores. A análise destes compostos permite contribuir para a avaliação do impacto dos açúcares na saúde e seu efeito fisiológico, além de permitir relacionar atributos sensoriais e atuar no controlo de qualidade e autenticidade dos alimentos. Embora existam diversas metodologias analíticas usadas rotineiramente na identificação e quantificação dos açúcares nos alimentos, em geral, estes métodos apresentam diversas desvantagens, tais como lentidão das análises, consumo elevado de reagentes químicos e necessidade de pré-tratamentos destrutivos das amostras. Por isso se decidiu aplicar uma língua eletrónica potenciométrica, construída com sensores poliméricos selecionados considerando as sensibilidades aos açucares obtidas em trabalhos anteriores, na análise dos açúcares nos alimentos, visando estabelecer uma metodologia analítica e procedimentos matemáticos para quantificação destes compostos. Para este propósito foram realizadas análises em soluções padrão de misturas ternárias dos açúcares em diferentes níveis de concentração e em soluções de dissoluções de amostras de mel, que foram previamente analisadas em HPLC para se determinar as concentrações de referência dos açúcares. Foi então feita uma análise exploratória dos dados visando-se remover sensores ou observações discordantes através da realização de uma análise de componentes principais. Em seguida, foram construídos modelos de regressão linear múltipla com seleção de variáveis usando o algoritmo stepwise e foi verificado que embora fosse possível estabelecer uma boa relação entre as respostas dos sensores e as concentrações dos açúcares, os modelos não apresentavam desempenho de previsão satisfatório em dados de grupo de teste. Dessa forma, visando contornar este problema, novas abordagens foram testadas através da construção e otimização dos parâmetros de um algoritmo genético para seleção de variáveis que pudesse ser aplicado às diversas ferramentas de regressão, entre elas a regressão pelo método dos mínimos quadrados parciais. Foram obtidos bons resultados de previsão para os modelos obtidos com o método dos mínimos quadrados parciais aliado ao algoritmo genético, tanto para as soluções padrão quanto para as soluções de mel, com R²ajustado acima de 0,99 e RMSE inferior a 0,5 obtidos da relação linear entre os valores previstos e experimentais usando dados dos grupos de teste. O sistema de multi-sensores construído se mostrou uma ferramenta adequada para a análise dos iii açúcares, quando presentes em concentrações maioritárias, e alternativa a métodos instrumentais de referência, como o HPLC, por reduzir o tempo da análise e o valor monetário da análise, bem como, ter um preparo mínimo das amostras e eliminar produtos finais poluentes.
- Sugars quantification using an electronic tongue: multivariate calibration with a genetic algorithm for sensor selectionPublication . Arca, Vinicius C.; Peres, António M.; Bona, Evandro; Dias, L.G.Sugar analysis contributes to the assessment of their impact on the human health and their physiological effects, allowing to better understand their relation with sensory attributes and acting on quality control and authenticity of food products [1,2]. Although, several analytical methods are routinely used in the identification and quantification of sugars in foods, in general, these methods have several disadvantages such as, slowness of the analysis, high consumption of chemicals and the need for destructive pretreatments of samples. The development of new reliable methods have been proposed [3] to avoid theses disadvantages and, in this follow-up, it was decided to apply a potentiometric electronic tongue, built with cross-selectivity polymeric sensors that were selected considering the sensitivities towards sugars, previously reported [4]. The analysis of sugars (glucose, fructose and sucrose) in this study aimed to establish an analytical methodology and mathematical framework to quantify these compounds. For this purpose, analyzes were performed using standard solutions of ternary mixtures of these sugars, by applying an orthogonal experimental design to establish different concentration levels [5]. It was then made an exploratory data analysis using principal component analysis to verify data variability. To establish a multiple linear relationship between the concentration of sugars and the potentiometric signals obtained by the electronic tongue, a genetic algorithm was used to select the best subset of sensors and cross-validation with K-folds, to optimize the model in prediction. Satisfactory results were obtained in each sugar analysis. For instance, the multiple linear regression model for fructose analysis allowed to have, by cross-validation using K-folds (dividing analytical data randomly into 7 groups), a R²ajusted above 0.99 and RMSE less than 0.5. Moreover, the linear relationship between the predicted values by the obtained model and the respective fructose experimental values allowed to obtain a slope of 0.98±0.02 (close to unity) and an intercept value statistically equal to zero. The multisensor system used proved to be a suitable tool for the analysis of sugars, when present in majority concentrations and alternative to the instrumental reference methods, such as HPLC. It allowed to decrease the time and price of each analysis, and also, to reduce sample preparation work and eliminate pollutants in the analysis procedure.
- Sugars quantification using an Electronic Tongue: multivariate calibration with a genetic algorithm for sensor selectionPublication . Arca, Vinicius C.; Peres, António M.; Bona, Evandro; Dias, L.G.Sugar analysis contributes to the assessment of their impact on the human health and their physiological effects, allowing to better understand their relation with sensory attributes and acting on quality control and authenticity of food products [1,2]. Although, several analytical methods are routinely used in the identification and quantification of sugars in foods, in general, these methods have several disadvantages such as, slowness of the analysis, high consumption of chemicals and the need for destructive pretreatments of samples. The development of new reliable methods have been proposed [3] to avoid theses disadvantages and, in this follow-up, it was decided to apply a potentiometric electronic tongue, built with cross-selectivity polymeric sensors that were selected considering the sensitivities towards sugars, previously reported [4]. The analysis of sugars (glucose, fructose and sucrose) in this study aimed to establish an analytical methodology and mathematical framework to quantify these compounds. For this purpose, analyzes were performed using standard solutions of ternary mixtures of these sugars, by applying an orthogonal experimental design to establish different concentration levels [5]. It was then made an exploratory data analysis using principal component analysis to verify data variability. To establish a multiple linear relationship between the concentration of sugars and the potentiometric signals obtained by the electronic tongue, a genetic algorithm was used to select the best subset of sensors and cross-validation with K-folds, to optimize the model in prediction. Satisfactory results were obtained in each sugar analysis. For instance, the multiple linear regression model for fructose analysis allowed to have, by cross-validation using K-folds (dividing analytical data randomly into 7 groups), a R²ajusted above 0.99 and RMSE less than 0.5. Moreover, the linear relationship between the predicted values by the obtained model and the respective fructose experimental values allowed to obtain a slope of 0.98±0.02 (close to unity) and an intercept value statistically equal to zero. The multisensor system used proved to be a suitable tool for the analysis of sugars, when present in majority concentrations and alternative to the instrumental reference methods, such as HPLC. It allowed to decrease the time and price of each analysis, and also, to reduce sample preparation work and eliminate pollutants in the analysis procedure.
- Sugars' quantifications using a potentiometric electronic tongue with cross-selective sensors: Influence of an ionic backgroundPublication . Arca, Vinicius C.; Peres, António M.; Machado, Adélio A.S.C.; Bona, Evandro; Dias, L.G.Glucose, fructose and sucrose are sugars with known physiological e ects, and their consumption has impact on the human health, also having an important e ect on food sensory attributes. The analytical methods routinely used for identification and quantification of sugars in foods, like liquid chromatography and visible spectrophotometry have several disadvantages, like longer analysis times, high consumption of chemicals and the need for pretreatments of samples. To overcome these drawbacks, in this work, a potentiometric electronic tongue built with two identical multi-sensor systems of 20 cross-selectivity polymeric sensors, coupled with multivariate calibration with feature selection (a simulated annealing algorithm) was applied to quantify glucose, fructose and sucrose, and the total content of sugars as well. Standard solutions of ternary mixtures of the three sugars were used for multivariate calibration purposes, according to an orthogonal experimental design (multilevel fractional factorial design) with or without ionic background (KCl solution). The quantitative models’ predictive performance was evaluated by cross-validation with K-folds (internal validation) using selected data for training (selected with the K-means algorithm) and by external validation using test data. Overall, satisfactory predictive quantifications were achieved for all sugars and total sugar content based on subsets comprising 16 or 17 sensors. The test data allowed us to compare models’ predictions values and the respective sugar experimental values, showing slopes varying between 0.95 and 1.03, intercept values statistically equal to zero (p-value 0.05) and determination coe cients equal to or greater than 0.986. No significant di erences were found between the predictive performances for the quantification of sugars using synthetic solutions with or without KCl (1 mol L1), although the adjustment of the ionic background allowed a better homogenization of the solution’s matrix and probably contributed to an enhanced confidence in the analytical work across all of the calibration working range.
