Repository logo
 
Publication

Comparison of neural network architectures for diabetes prediction

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorGuerreiro, Nathan Antonio
dc.contributor.authorNijo, Rui
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2025-06-26T14:31:30Z
dc.date.available2025-06-26T14:31:30Z
dc.date.issued2025
dc.description.abstractDiabetes represents a significant global health challenge, with millions of individuals affected and substantial impacts on healthcare systems. In this study, we compare two neural network architectures for diabetes prediction: the Feedforward Neural Network (FFNN) and the Cascade-Forward Backpropagation Neural Network (CFBPNN). Utilizing the Diabetes Prediction Dataset, comprising 100,000 samples, and after a balanced result, 17,000 samples were obtained. The networks are trained using the Levenberg-Marquardt and Resilient Backpropagation algorithms, and performance metrics, including precision, sensitivity, specificity, accuracy, F1-score, and computational time, are evaluated. Results indicate that the FFNN architecture paired with the Levenberg-Marquardt algorithm demonstrates superior diagnostic prediction accuracy with 91,10%. However, this comes at the cost of longer computational time compared to the CFBPNN.eng
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020).
dc.identifier.citationGuerreiro, Nathan Antonio; Nijo, Rui; Teixeira, João Paulo.(2025). Comparison of neural network architectures for diabetes prediction. Procedia Computer Science. ISSN 1877-0509. 256, p. 942-948
dc.identifier.doi10.1016/j.procs.2025.02.198
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/34624
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relation.ispartofProcedia Computer Science
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectNeural Network Architectures
dc.subjectDiabetes Prediction
dc.subjectMachine Learning
dc.titleComparison of neural network architectures for diabetes predictioneng
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage948
oaire.citation.startPage942
oaire.citation.titleProcedia Computer Science
oaire.citation.volume256
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameTeixeira
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1877050925005599-main.pdf
Size:
639.68 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: