Publication
A potentiometric electronic tongue as a discrimination tool of water-food indicator/contamination bacteria
dc.contributor.author | Ghrissi, Hiba | |
dc.contributor.author | Veloso, Ana C.A. | |
dc.contributor.author | Marx, Ítala | |
dc.contributor.author | Dias, Teresa | |
dc.contributor.author | Peres, António M. | |
dc.date.accessioned | 2018-02-19T10:00:00Z | |
dc.date.accessioned | 2021-11-23T11:27:40Z | |
dc.date.available | 2018-01-19T10:00:00Z | |
dc.date.available | 2021-11-23T11:27:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Microorganism assessment plays a key role in food quality and safety control but conventional techniques are costly and/or time consuming. Alternatively, electronic tongues (E-tongues) can fulfill this critical task. Thus, a potentiometric lab-made E-tongue (40 lipid sensor membranes) was used to differentiate four common food contamination bacteria, including two Gram positive (Enterococcus faecalis, Staphylococcus aureus) and two Gram negative (Escherichia coli, Pseudomonas aeruginosa). Principal component analysis and a linear discriminant analysis-simulated annealing algorithm (LDA-SA) showed that the potentiometric signal profiles acquired during the analysis of aqueous solutions containing known amounts of each studied bacteria allowed a satisfactory differentiation of the four bacterial strains. An E-tongue-LDA-SA model (12 non-redundant sensors) correctly classified 98 ± 5% of the samples (repeated K-fold-CV), the satisfactory performance of which can be attributed to the capability of the lipid membranes to establish electrostatic interactions/hydrogen bonds with hydroxyl, amine and/or carbonyl groups, which are comprised in the bacteria outer membranes. Furthermore, multiple linear regression models, based on selected subsets of E-tongue sensors (12–15 sensors), also allowed quantifying the bacteria contents in aqueous solutions (0.993 ± 0.011 ≤ R2 ≤ 0.998 ± 0.005, for repeated K-fold-CV). In conclusion, the E-tongue could be of great value as a preliminary food quality and safety diagnosis tool. | en_EN |
dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020) and to CEB (UIDB/04469/2020), as well as to the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. Ítala M.G. Marx also acknowledges the Ph.D. research grant (SFRH/BD/137283/2018) provided by FCT. | |
dc.description.version | info:eu-repo/semantics/publishedVersion | en_EN |
dc.identifier.citation | Ghrissi, Hiba; Veloso, Ana C.A.; Marx, Ítala M.G.; Dias, Teresa; Peres, António M. (2021). A potentiometric electronic tongue as a discrimination tool of water-food indicator/contamination bacteria. Chemosensors. ISSN 2227-9040. 9:6, p. 1-15 | en_EN |
dc.identifier.doi | 10.3390/chemosensors9060143 | en_EN |
dc.identifier.uri | http://hdl.handle.net/10198/24330 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | en_EN |
dc.relation | Mountain Research Center | |
dc.relation | Centre of Biological Engineering of the University of Minho | |
dc.relation | Improvement of olive oil flavor and bioactive composition by optimizing industrial extraction using taste sensor devices | |
dc.subject | Chemometrics | en_EN |
dc.subject | Electronic tongue | en_EN |
dc.subject | Food-water bacteria | en_EN |
dc.subject | Linear discriminant analysis | en_EN |
dc.subject | Lipid sensor membranes | en_EN |
dc.subject | Potentiometric analysis | en_EN |
dc.subject | Principal component analysis | en_EN |
dc.subject | Simulated annealing variable selection algorithm | en_EN |
dc.title | A potentiometric electronic tongue as a discrimination tool of water-food indicator/contamination bacteria | en_EN |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Mountain Research Center | |
oaire.awardTitle | Centre of Biological Engineering of the University of Minho | |
oaire.awardTitle | Improvement of olive oil flavor and bioactive composition by optimizing industrial extraction using taste sensor devices | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04469%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F137283%2F2018/PT | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | POR_NORTE | |
person.familyName | Marx | |
person.familyName | Dias | |
person.familyName | Peres | |
person.givenName | Ítala | |
person.givenName | Teresa | |
person.givenName | António M. | |
person.identifier | 1676851 | |
person.identifier | 142703 | |
person.identifier | 107333 | |
person.identifier.ciencia-id | 2717-C420-DEAE | |
person.identifier.ciencia-id | CF16-5443-F420 | |
person.identifier.orcid | 0000-0002-7049-2114 | |
person.identifier.orcid | 0000-0002-9419-9561 | |
person.identifier.orcid | 0000-0001-6595-9165 | |
person.identifier.rid | GLV-5485-2022 | |
person.identifier.rid | I-8470-2012 | |
person.identifier.scopus-author-id | 57191503603 | |
person.identifier.scopus-author-id | 56830642600 | |
person.identifier.scopus-author-id | 7102331969 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | en_EN |
rcaap.type | article | en_EN |
relation.isAuthorOfPublication | ea543e4e-b9e9-45f1-afac-dda52dbf0ab8 | |
relation.isAuthorOfPublication | 87c9cae0-314d-4622-ba85-4d3ec5726606 | |
relation.isAuthorOfPublication | 7d93be47-8dc4-4413-9304-5b978773d3bb | |
relation.isAuthorOfPublication.latestForDiscovery | ea543e4e-b9e9-45f1-afac-dda52dbf0ab8 | |
relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
relation.isProjectOfPublication | 58a7266d-f7d7-4efa-9d8f-9b455c6b95e0 | |
relation.isProjectOfPublication | e0e232c7-862c-4474-b423-f9426c8ad801 | |
relation.isProjectOfPublication.latestForDiscovery | 29718e93-4989-42bb-bcbc-4daff3870b25 |