Repository logo
 
No Thumbnail Available
Publication

Segmentação de imagens através de métodos robustos de clusterização

Use this identifier to reference this record.
Name:Description:Size:Format: 
2016EJI_Resumo_JClement.pdf285.5 KBAdobe PDF Download

Advisor(s)

Abstract(s)

O principal objetivo deste trabalho consiste em encontrar o melhor método para segmentar imagens médicas, mais especificamente, radiografias dentárias. Pretende-se também definir critérios de comparação relevantes para avaliar a qualidade da segmentação obtida. Este último ponto permitiu definir uma metodologia de validação dos resultados obtidos com duas categorias distintas de algoritmos: k-means e fuzzy c-means. Em alternativa, testaram-se também os métodos de Otsu e da binarisation. As experiencias efetuadas tiveram em conta imagens diferentes, cada uma com características próprias, de maneira a obter uma técnica de segmentação o mais genérica possível. Os resultados obtidos foram comparados com a segmentação real dada por um profissional de odontologia. Observou-se que os métodos de clusterização têm dificuldade em separar a parte correspondente ao dente da parte da gengiva. Efetivamente, nesta área da imagem a tonalidade dos pixéis é muito semelhante. No entanto, os resultados são promissores pois a técnicas utilizadas conseguem identificar grande parte da área correspondente ao dente.

Description

Keywords

Radiografia dentária Segmentação de imagem Cluster K-means Fuzzy c-means

Citation

Lawniczak, Jean Clement; Balsa, Carlos (2017). Segmentação de imagens através de métodos robustos de clusterização. In IV Encontro de Jovens Investigadores do Instituto Politécnico de Bragança. Bragança

Research Projects

Organizational Units

Journal Issue

Publisher

Instituto Politécnico de Bragança

CC License