Publication
Omnibus modeling of listeria monocytogenes growth rates at low temperatures
| dc.contributor.author | Pennone, Vincenzo | |
| dc.contributor.author | Gonzales-Barron, Ursula | |
| dc.contributor.author | Hunt, Kevin | |
| dc.contributor.author | Cadavez, Vasco | |
| dc.contributor.author | McAuliffe, Olivia | |
| dc.contributor.author | Butler, Francis | |
| dc.date.accessioned | 2018-02-19T10:00:00Z | |
| dc.date.accessioned | 2021-11-22T14:46:31Z | |
| dc.date.available | 2018-01-19T10:00:00Z | |
| dc.date.available | 2021-11-22T14:46:31Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Listeria monocytogenes is a pathogen of considerable public health importance with a high case fatality. L. monocytogenes can grow at refrigeration temperatures and is of particular concern for ready-to-eat foods that require refrigeration. There is substantial interest in conducting and modeling shelf-life studies on L. monocytogenes, especially relating to storage temperature. Growth model parameters are generally estimated from constant-temperature growth experiments. Traditionally, first-order and second-order modeling (or primary and secondary) of growth data has been done sequentially. However, omnibus modeling, using a mixed-effects nonlinear regression approach, can model a full dataset covering all experimental conditions in one step. This study compared omnibus modeling to conventional sequential first-order/second-order modeling of growth data for five strains of L. monocytogenes. The omnibus model coupled a Huang primary model for growth with secondary models for growth rate and lag phase duration. First-order modeling indicated there were small significant differences in growth rate depending on the strain at all temperatures. Omnibus modeling indicated smaller differences. Overall, there was broad agreement between the estimates of growth rate obtained by the first-order and omnibus modeling. Through an appropriate choice of fixed and random effects incorporated in the omnibus model, potential errors in a dataset from one environmental condition can be identified and explored. | en_EN |
| dc.description.sponsorship | This research was part funded by the Irish Department of Agriculture, Food, and Marine Research Funding Program, Project Reference 17/F/244, “Understanding Listeria monocytogrenes growth in food”. U. Gonzales-Barron and V. Cadavez are grateful to the EU PRIMA program and the Portuguese Foundation for Science and Technology (FCT) for funding the ArtiSaneFood project (PRIMA/0001/2018) and to FCT for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). U. Gonzales-Barron acknowledges the national funding by FCT, P.I., through the Institutional Scientific Employment Program contract. | |
| dc.description.version | info:eu-repo/semantics/publishedVersion | en_EN |
| dc.identifier.citation | Pennone, Vincenzo; Gonzales-Barron, Ursula; Hunt, Kevin; Cadavez, Vasco; McAuliffe, Olivia; Butler, Francis (2021). Omnibus modeling of listeria monocytogenes growth rates at low temperatures. Foods. eISSN 2304-8158. 10:5, p. 1-14 | en_EN |
| dc.identifier.doi | 10.3390/foods10051099 | en_EN |
| dc.identifier.uri | http://hdl.handle.net/10198/24265 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | en_EN |
| dc.relation | Innovative Bio-interventions and Risk Modelling Approaches for Ensuring Microbial Safety and Quality of Mediterranean Artisanal Fermented Foods | |
| dc.relation | Mountain Research Center | |
| dc.subject | Growth models | en_EN |
| dc.subject | Huang model | en_EN |
| dc.subject | Listeria monocytogenes | en_EN |
| dc.subject | Omnibus modeling | en_EN |
| dc.subject | Predictive microbiology | en_EN |
| dc.title | Omnibus modeling of listeria monocytogenes growth rates at low temperatures | en_EN |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Innovative Bio-interventions and Risk Modelling Approaches for Ensuring Microbial Safety and Quality of Mediterranean Artisanal Fermented Foods | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PRIMA%2F0001%2F2018/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
| oaire.fundingStream | 3599-PPCDT | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Gonzales-Barron | |
| person.familyName | Cadavez | |
| person.givenName | Ursula | |
| person.givenName | Vasco | |
| person.identifier | R-000-HDG | |
| person.identifier.ciencia-id | 0813-C319-B62A | |
| person.identifier.ciencia-id | 441B-01AB-A12E | |
| person.identifier.orcid | 0000-0002-8462-9775 | |
| person.identifier.orcid | 0000-0002-3077-7414 | |
| person.identifier.rid | A-3958-2010 | |
| person.identifier.scopus-author-id | 9435483700 | |
| person.identifier.scopus-author-id | 9039121900 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | en_EN |
| rcaap.type | article | en_EN |
| relation.isAuthorOfPublication | 17c6b98f-4fb5-41d3-839a-6f77ec70021a | |
| relation.isAuthorOfPublication | 57b410e9-f6b7-42ff-ab3d-b526278715eb | |
| relation.isAuthorOfPublication.latestForDiscovery | 57b410e9-f6b7-42ff-ab3d-b526278715eb | |
| relation.isProjectOfPublication | 75b223ba-4ae7-45dc-a445-c3acb8c8950e | |
| relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
| relation.isProjectOfPublication.latestForDiscovery | 29718e93-4989-42bb-bcbc-4daff3870b25 |
