Publication
Human resources sptimization with multilayer perceptron: an automated selection tool
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
| dc.contributor.author | Neto, Reginaldo G. de S. | |
| dc.contributor.author | Jatobá, Mariana N. | |
| dc.contributor.author | Santana, Matheus | |
| dc.contributor.author | Fernandes, Paula Sdete | |
| dc.contributor.author | Ferreira, João J. | |
| dc.contributor.author | Foleis, Juliano Henrique | |
| dc.contributor.author | Teixeira, João Paulo | |
| dc.date.accessioned | 2025-07-11T09:14:33Z | |
| dc.date.available | 2025-07-11T09:14:33Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This study aims to create an artificial neural network (ANN) model with a multi-layer perceptron (MLP) architecture, designed to analyze the CVs of candidates for the position of sales consultant. To do this, a database of 600 CVs cataloged with scores from 0 to 10 by specialists with experience in recruitment and selection (R&S) is used. Fourteen characteristics are extracted from each CV, including ordinal and nominal attributes. A model with 3 hidden layers is used, which is trained with a split of 80% for training and 20% for testing. The activation function chosen for the hidden layers is the Rectified Linear Unit (ReLU), using the "adam" optimizer with a backpropagation algorithm during training using the Mean Squared Error (MSE) performance metric. The results show that the model is effective, giving a Mean Absolute Error (MAE) of 0.33, MSE of 0.37, Root Mean Squared Error (RMSE) of 0.61, and an r² Score of 0.96. These data not only confirm MLP's ability to replicate human accuracy but also suggest that such technologies can provide a faster and less biased tool for evaluating CVs. This performance of ANN indicates avenues for future research into the integration of other Artificial Intelligence (AI) technologies to refine the interpretation of less quantifiable characteristics, as well as making the process of R&S of new candidates in companies more agile. | eng |
| dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, UIDB/05757/2020 (DSI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DSI: 10.54499/UIDB/05757/2020); SusTEC, LA/P/0007/2020 (DSI: 10.54499/LA/P/0007/2020); UNIAG, UIDB/04752/2020 (DSI 10.54499/UIDB/04752/2020) and UIDP/04752/2020 (DSI 10.54499/UIDP/04752/2020); and NECE, UIDB/04630/2020 (DSI 0.54499/UIDP/04630/2020). The authors are also grateful to National funding by FCT, Foundation for Science and Technology, through the individual research grant BD/10678/2022 of Mariana Namen Jatobá. | |
| dc.identifier.citation | Neto, Reginaldo G. de S.; Jatobá, Mariana N.; Santana, Matheus; Fernandes, Paula Sdete; Ferreira, João J.; Foleis, Juliano Henrique; Teixeira, João Paulo. (2025). Human resources sptimization with multilayer perceptron: an automated selection tool. Procedia Computer Science. ISSN 1877-0509. 256, p. 238-245 | |
| dc.identifier.doi | 10.1016/j.procs.2025.02.117 | |
| dc.identifier.issn | 1877-0509 | |
| dc.identifier.uri | http://hdl.handle.net/10198/34662 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
| dc.relation | Applied Management Research Unit | |
| dc.relation | Mountain Research Center | |
| dc.relation | Research Unit in Business Sciences | |
| dc.relation.ispartof | Procedia Computer Science | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Artificial Intelligence | |
| dc.subject | Recruitment | |
| dc.subject | CV | |
| dc.subject | Classification | |
| dc.subject | MLP | |
| dc.subject | HR Management | |
| dc.title | Human resources sptimization with multilayer perceptron: an automated selection tool | eng |
| dc.type | working paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
| oaire.awardTitle | Applied Management Research Unit | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Research Unit in Business Sciences | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04752%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04630%2F2020/PT | |
| oaire.citation.endPage | 245 | |
| oaire.citation.startPage | 238 | |
| oaire.citation.title | Procedia Computer Science | |
| oaire.citation.volume | 256 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Teixeira | |
| person.givenName | João Paulo | |
| person.identifier | 663194 | |
| person.identifier.ciencia-id | 4F15-B322-59B4 | |
| person.identifier.orcid | 0000-0002-6679-5702 | |
| person.identifier.rid | N-6576-2013 | |
| person.identifier.scopus-author-id | 57069567500 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 33f4af65-7ddf-46f0-8b44-a7470a8ba2bf | |
| relation.isAuthorOfPublication.latestForDiscovery | 33f4af65-7ddf-46f0-8b44-a7470a8ba2bf | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | ac4fb709-719a-450b-8c96-17592d46f5e9 | |
| relation.isProjectOfPublication | db81737a-fcb8-4cd9-b025-f7465790c52b | |
| relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
| relation.isProjectOfPublication | 08af0f73-3cfb-4d06-aa89-6bf40011eca8 | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
