Repository logo
 
Publication

Fall detection systems to be used by elderly people

dc.contributor.authorIgrejas, Getúlio
dc.contributor.authorAmaral, Joana S.
dc.contributor.authorRodrigues, Pedro João
dc.date.accessioned2014-10-14T15:33:29Z
dc.date.available2014-10-14T15:33:29Z
dc.date.issued2013
dc.description.abstractStatistics show that, each year, falls affect tens of millions of elderly people throughout the world. Falls are the leading cause of injury deaths and injury-related hospitalization among people over 65 years old. A system able to automatically detect falls could be an important tool from a social point of view, as it would contribute to the prompt assistance of these emergency cases. Currently, many researchers are interested in the development of fall detection systems. This chapter presents several approaches suggested so far, with special attention to the different strategies and technologies applied. Other sen- sor technologies that could be applied to this field are also referred. Additionally, a new fall detection system based on a machine learning paradigm, using neural networks, is suggested. The system was trained using fall and non-fall examples. Although the test set has included some particular examples, problematic for detection of the correspondent motion, the obtained results present good specificity (88.9%) and sensitivity (93.9%) rates.por
dc.identifier.citationIgrejas, Getúlio; Amaral, J.S.; Rodrigues, P.J.S. (2013). Fall detection systems to be used by elderly people. In Cruz-Cunha, Maria Manuela [et al.] Handbook of Research on ICTs for Human-Centered Healthcare and Social Care Services. IGI Global. p.449-473. ISBN 9781466639867por
dc.identifier.isbn9781466639867
dc.identifier.urihttp://hdl.handle.net/10198/10814
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIGI Globalpor
dc.subjectFall detectorpor
dc.subjectNeural networkspor
dc.subjectMachine learningpor
dc.subjectElderly peoplepor
dc.titleFall detection systems to be used by elderly peoplepor
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage473por
oaire.citation.startPage449por
oaire.citation.titleHandbook of Research on ICTs for Human-Centered Healthcare and Social Care Servicespor
person.familyNameIgrejas
person.familyNameAmaral
person.familyNameRodrigues
person.givenNameGetúlio
person.givenNameJoana S.
person.givenNamePedro João
person.identifier.ciencia-id5319-7DE8-BEDA
person.identifier.ciencia-id1316-21BB-9015
person.identifier.orcid0000-0002-6820-8858
person.identifier.orcid0000-0002-3648-7303
person.identifier.orcid0000-0002-0555-2029
person.identifier.ridM-8571-2013
person.identifier.scopus-author-id47761255900
rcaap.rightsrestrictedAccesspor
rcaap.typebookPartpor
relation.isAuthorOfPublicationab4092ec-d1b1-4fe0-b65a-efba1310fd5a
relation.isAuthorOfPublication42be2cf4-adc4-4e7f-ac60-7aab515b38cd
relation.isAuthorOfPublication6c5911a6-b62b-4876-9def-60096b52383a
relation.isAuthorOfPublication.latestForDiscovery6c5911a6-b62b-4876-9def-60096b52383a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fall.pdf
Size:
808.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: