Publication
Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review
| datacite.subject.fos | Ciências Agrárias::Outras Ciências Agrárias | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.fos | Engenharia e Tecnologia::Biotecnologia Ambiental | |
| datacite.subject.fos | Ciências Naturais::Ciências da Computação e da Informação | |
| datacite.subject.fos | Ciências Naturais::Ciências da Terra e do Ambiente | |
| datacite.subject.sdg | 02:Erradicar a Fome | |
| datacite.subject.sdg | 13:Ação Climática | |
| dc.contributor.author | Lima, Arthur A. J. | |
| dc.contributor.author | Lopes, Júlio Castro | |
| dc.contributor.author | Lopes, Rui Pedro | |
| dc.contributor.author | Figueiredo, Tomás d'Aquino | |
| dc.contributor.author | Vidal-Vásquez, Eva | |
| dc.contributor.author | Hernandez Hernandez, Zulimar | |
| dc.date.accessioned | 2025-04-09T15:23:56Z | |
| dc.date.available | 2025-04-09T15:23:56Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In the current global change scenario, valuable tools for improving soils and increasing both agricultural productivity and food security, together with effective actions to mitigate the impacts of ongoing climate change trends, are priority issues. Soil Organic Carbon (SOC) acts on these two topics, as C is a core element of soil organic matter, an essential driver of soil fertility, and becomes problematic when disposed of in the atmosphere in its gaseous form. Laboratory methods to measure SOC are expensive and time-consuming. This Systematic Literature Review (SLR) aims to identify techniques and alternative ways to estimate SOC using Remote-Sensing (RS) spectral data and computer tools to process this database. This SLR was conducted using Systematic Review and MetaAnalysis (PRISMA) methodology, highlighting the use of Deep Learning (DL), traditional neural networks, and other machine-learning models, and the input data were used to estimate SOC. The SLR concludes that Sentinel satellites, particularly Sentinel-2, were frequently used. Despite limited datasets, DL models demonstrated robust performance as assessed by R2 and RMSE. Key input data, such as vegetation indices (e.g., NDVI, SAVI, EVI) and digital elevation models, were consistently correlated with SOC predictions. These findings underscore the potential of combining RS and advanced artificial-intelligence techniques for efficient and scalable SOC monitoring. | por |
| dc.description.sponsorship | The authors would like to thank the Foundation for Science and Technology (FCT, Portugal) and the national funds FCT/MCTES (PIDDAC) for the financial support to CIMO (UIDB/00690/2020 and UIDP/00690/2020), CeDRI (UIDB/05757/2020 and UIDP/05757/2020), and SusTEC (LA/P/0007/2020). The authors would also like to thank the national funding from the FCT, Foundation for Science and Technology, regarding the doctoral scholarships 2022.14010.BD to Arthur Aparecido Janoni Lima and PRT/BD/154594/2023 to Júlio Castro Lopes. The authors would also like to thank the Financial Mechanism of the European Economic Area (EEA) 2014-2021, “Programa Ambiente, Alterações Climáticas e Economia de Baixo Carbono”, “Programa Ambiente”, for financial support for the project “11_CALL#5 – Soluções inovadoras de base natural para restau- ração de serviços dos ecossistemas em áreas degradadas por grande incêndio de incêndio Picões, Portugal_SOILING”. | |
| dc.identifier.citation | Lima, Arthur A. J.; Lopes, Júlio Castro; Lopes, Rui Pedro:; Figueiredo, Tomás d'Aquino; Vidal-Vásquez, Eva; Hernandez Hernandez, Zulimar (2025). Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review. Remote Sensing. eISSN 2072-4292. 17:5, p. 1-27 | |
| dc.identifier.doi | 10.3390/rs17050882 | |
| dc.identifier.eissn | 2072-4292 | |
| dc.identifier.uri | http://hdl.handle.net/10198/34417 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | MDPI | |
| dc.relation | Mountain Research Center | |
| dc.relation | Mountain Research Center | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | 154594/2023 | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Deep learning | |
| dc.subject | Neural network | |
| dc.subject | Machine learning | |
| dc.subject | Soil organic carbon | |
| dc.subject | Satellite images | |
| dc.title | Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review | por |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.citation.endPage | 27 | |
| oaire.citation.issue | 5 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Remote Sensing | |
| oaire.citation.volume | 17 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Lima | |
| person.familyName | Lopes | |
| person.familyName | Lopes | |
| person.familyName | Figueiredo | |
| person.familyName | Hernandez Hernandez | |
| person.givenName | Arthur A. J. | |
| person.givenName | Júlio Castro | |
| person.givenName | Rui Pedro | |
| person.givenName | Tomás d'Aquino | |
| person.givenName | Zulimar | |
| person.identifier | 1297327 | |
| person.identifier.ciencia-id | 741A-E55B-257A | |
| person.identifier.ciencia-id | CC12-FD7E-D0BC | |
| person.identifier.ciencia-id | 8E14-54E4-4DB5 | |
| person.identifier.ciencia-id | 961D-607D-51CC | |
| person.identifier.ciencia-id | 5815-8F1B-70F4 | |
| person.identifier.orcid | 0000-0002-5636-022X | |
| person.identifier.orcid | 0000-0002-9170-5078 | |
| person.identifier.orcid | 0000-0001-7690-8996 | |
| person.identifier.orcid | 0000-0002-7790-8397 | |
| person.identifier.scopus-author-id | 54790554500 | |
| person.identifier.scopus-author-id | 36084226300 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 4a8bf1c0-9209-4e3c-963b-0d4890f7b5ef | |
| relation.isAuthorOfPublication | ab47fc12-ad28-436e-8bc6-a7f6359750e2 | |
| relation.isAuthorOfPublication | e1e64423-0ec8-46ee-be96-33205c7c98a9 | |
| relation.isAuthorOfPublication | db897e48-ecf7-4ce1-ba27-369260337510 | |
| relation.isAuthorOfPublication | 077df6f8-4a5e-4b46-8a8b-327f436c2653 | |
| relation.isAuthorOfPublication.latestForDiscovery | 4a8bf1c0-9209-4e3c-963b-0d4890f7b5ef | |
| relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
| relation.isProjectOfPublication | 0aac8939-28c2-46f4-ab6b-439dba7f9942 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication.latestForDiscovery | 29718e93-4989-42bb-bcbc-4daff3870b25 |
