Repository logo
 
Publication

A novel method for anomaly detection using beta hebbian learning and principal component analysis

dc.contributor.authorZayas-Gato, Francisco
dc.contributor.authorMichelena, Álvaro
dc.contributor.authorQuintián, Héctor
dc.contributor.authorJove, Esteban
dc.contributor.authorCasteleiro-Roca, José-Luis
dc.contributor.authorLeitão, Paulo
dc.contributor.authorCalvo-Rolle, Jose Luis
dc.date.accessioned2022-03-17T13:58:30Z
dc.date.available2022-03-17T13:58:30Z
dc.date.issued2023
dc.description.abstractIn this research work a novel two-step system for anomaly detection is presented and tested over several real datasets. In the first step the novel Exploratory Projection Pursuit, Beta Hebbian Learning algorithm, is applied over each dataset, either to reduce the dimensionality of the original dataset or to face nonlinear datasets by generating a new subspace of the original dataset with lower, or even higher, dimensionality selecting the right activation function. Finally, in the second step Principal Component Analysis anomaly detection is applied to the new subspace to detect the anomalies and improve its classification capabilities. This new approach has been tested over several different real datasets, in terms of number of variables, number of samples and number of anomalies. In almost all cases, the novel approach obtained better results in terms of area under the curve with similar standard deviation values. In case of computational cost, this improvement is only remarkable when complexity of the dataset in terms of number of variables is high.pt_PT
dc.description.sponsorshipCITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund and the Secretaría Xeral de Universidades (ref. ED431G 2019/01).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationZayas-Gato, Francisco; Michelena, Álvaro; Quintián, Héctor; Jove, Esteban; Casteleiro-Roca, José-Luis; Leitão, Paulo; Calvo-Rolle, Jose Luis (2023). A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic Journal of the IGPL. eISSN 1368-9894. 31:2, p.390-399
dc.identifier.doi10.1093/jigpal/jzac026pt_PT
dc.identifier.eissn1368-9894
dc.identifier.issn1367-0751
dc.identifier.urihttp://hdl.handle.net/10198/25246
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherOxford Academicpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectOne-classpt_PT
dc.subjectDimensional reductionpt_PT
dc.subjectBHLpt_PT
dc.subjectPCApt_PT
dc.titleA novel method for anomaly detection using beta hebbian learning and principal component analysispt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleLogic Journal of the IGPLpt_PT
person.familyNameLeitão
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id35584388900
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Zayas-gato-2022-A-novel-method-for-anomaly-detectio.pdf
Size:
317.93 KB
Format:
Adobe Portable Document Format