Repository logo
 
Publication

Using analog ensembles with alternative metrics for hindcasting with multistations

dc.contributor.authorBalsa, Carlos
dc.contributor.authorRodrigues, Carlos Veiga
dc.contributor.authorLopes, Isabel Maria
dc.contributor.authorRufino, José
dc.date.accessioned2023-02-16T10:03:53Z
dc.date.available2023-02-16T10:03:53Z
dc.date.issued2020
dc.description.abstractThis study concerns making weather predictions for a location where no data is available, using meteorological datasets from nearby stations. The hindcast with multiple stations is performed with different variants of the Analog Ensemble (AnEn) method. In addition to the traditional Monache metric used to identify analogs in datasets from one or two stations, several new metrics are explored, namely cosine similarity, normalization, and k-means clustering. These were analyzed and benchmarked to find the ones that bring improvements. The best results were obtained with the k-means metric, yielding between 3% and 30% of lower quadratic error when compared against the Monache metric. Also, by making the predictors to include two stations, the performance of the hindcast improved, decreasing the error up to 16%, depending on the correlation between the predictor stations.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBalsa, Carlos; Rodrigues, C.Veiga; Lopes, Isabel Maria; Rufino, José (2020). Using analog ensembles with alternative metrics for hindcasting with multistations. Journal ParadigmPlus. 1:2, p. 1 – 17pt_PT
dc.identifier.doiDOI: 10.55969/paradigmplus.v1n2a1pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/26978
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAnalog ensemblespt_PT
dc.subjectMetricspt_PT
dc.subjectHindcastingpt_PT
dc.subjectTime seriespt_PT
dc.subjectMeteorological datapt_PT
dc.titleUsing analog ensembles with alternative metrics for hindcasting with multistationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage17pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleJournal ParadigmPluspt_PT
oaire.citation.volume1pt_PT
person.familyNameBalsa
person.familyNameLopes
person.familyNameRufino
person.givenNameCarlos
person.givenNameIsabel Maria
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-id8812-AE1C-A316
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-5614-3516
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.ridA-1728-2014
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55211017300
person.identifier.scopus-author-id55947199100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication111716db-94a0-4c24-b739-330dc2ae79fc
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscovery1e24d2ce-a354-442a-bef8-eebadd94b385

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
11-Article Text-56-4-10-20220510.pdf
Size:
771.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: