Repository logo
 
Publication

Classification of olive oils according to sensory defects using a potentiometric electronic tongue

dc.contributor.authorSilva, Lucas M.
dc.contributor.authorDias, L.G.
dc.contributor.authorRodrigues, Nuno
dc.contributor.authorVeloso, Ana C.A.
dc.contributor.authorRebello, Ligia P.G.
dc.contributor.authorPereira, J.A.
dc.contributor.authorPeres, António M.
dc.date.accessioned2020-02-27T11:06:19Z
dc.date.available2020-02-27T11:06:19Z
dc.date.issued2017
dc.description.abstractOlive oil is a highly appreciated food product being very prone to frauds. Olive oils may be graded as extra-virgin, virgin or lampante. This classification is attributed according to legal requirements, including chemical parameters and sensorial analysis. Among the organoleptic sensations, the capability of perceiving the presence or absence of sensory defects plays a key role for olive oils grade classification. This task is time-consuming and quite expensive, requiring the use of an official taste panel, which can only evaluate a low number of samples per day. In this work, an electronic tongue is proposed to discriminate olive oils according to the defect predominantly perceived (winey-vinegary, wet-wood, rancid and fusty/muddy sediment), by a trained sensory panel. Sub-sets of potentiometric signal profiles obtained from the lipid sensor membranes of the taste electrochemical device were selected using a simulated annealing meta-heuristic algorithm, allowing establishing classification linear discriminant model, which showed a predictive success classification rate of 81% for leave-one-out or cross-validation procedure. The satisfactory predictive performance achieved pointed out the practical potential of using this artificial taste sensor as a complementary methodology for olive oil sensory analysis.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSilva, Lucas M.; Dias, L.G.; Rodrigues, Nuno; Veloso, Ana C.A.; Rebello, Ligia P.G.; Pereira, J.A.; Peres, António M. (2017). Classification of olive oils according to sensory defects using a potentiometric electronic tongue. In XVIII Simposio Científico-Técnico de Expoliva 2017. Jaénpt_PT
dc.identifier.urihttp://hdl.handle.net/10198/20717
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.titleClassification of olive oils according to sensory defects using a potentiometric electronic tonguept_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceJaén, Espanhapt_PT
oaire.citation.titleXVIII Simposio Científico-Técnico de Expoliva 2017pt_PT
person.familyNameDias
person.familyNameRodrigues
person.familyNamePereira
person.familyNamePeres
person.givenNameLuís G.
person.givenNameNuno
person.givenNameJosé Alberto
person.givenNameAntónio M.
person.identifier107333
person.identifier.ciencia-id2F11-9092-FAAF
person.identifier.ciencia-idF41D-B424-5F78
person.identifier.ciencia-id611F-80B2-A7C1
person.identifier.ciencia-idCF16-5443-F420
person.identifier.orcid0000-0002-1210-4259
person.identifier.orcid0000-0002-9305-0976
person.identifier.orcid0000-0002-2260-0600
person.identifier.orcid0000-0001-6595-9165
person.identifier.ridL-6798-2014
person.identifier.ridI-8470-2012
person.identifier.scopus-author-id23569169900
person.identifier.scopus-author-id55258560600
person.identifier.scopus-author-id57204366348
person.identifier.scopus-author-id7102331969
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationeac8c166-4056-4ed0-8d8d-7ecb2c4481a5
relation.isAuthorOfPublication00739d63-995d-4b1f-97d0-03d24c7cf0fd
relation.isAuthorOfPublication7932162e-a2da-4913-b00d-17babbe51857
relation.isAuthorOfPublication7d93be47-8dc4-4413-9304-5b978773d3bb
relation.isAuthorOfPublication.latestForDiscovery7932162e-a2da-4913-b00d-17babbe51857

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2017_Expoliva_resumo.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: