Repository logo
 
Publication

The role of background colour in pollen recognition task using CNN

dc.contributor.authorMonteiro, Fernando C.
dc.contributor.authorPinto, Cristina M.
dc.contributor.authorRufino, José
dc.date.accessioned2022-01-14T09:31:13Z
dc.date.available2022-01-14T09:31:13Z
dc.date.issued2021
dc.description.abstractPollen recognition is a crucial but challenging task in addressing a variety of questions like pollination or palaeobotany, but also for other fields of research, e.g., allergology, melissopalynology or forensics. State-of-the-art methods mainly use deep learning CNNs for pollen recognition, however, we observe that existing published approaches use original images without study the possible biased recognition due to pollen’s background colour. In this paper, we evaluate the DenseNet model trained with original images and with segmented images (remove background) and analyse network’s predictive performance under these conditions using a cross evaluation approach. An accuracy of 97.4% was achieved that represents one of the best successes rate when weighted with the number of taxa of any attempt at automated pollen analysis currently documented in the literature. From these results, we confirm the existence of background specific influence in the recognition task.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMonteiro, Fernando C.; Pinto, Cristina M.; Rufino, José (2021). The role of background colour in pollen recognition task using CNN. In The 2021 World Congress in Computer Science, Computer Engineering, and Applied Computing (CSCE 2021): book of abstracts. Las Vegaspt_PT
dc.identifier.urihttp://hdl.handle.net/10198/24643
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAmerican Council on Science & Educationpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPollen recognitionpt_PT
dc.subjectDeep learningpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.titleThe role of background colour in pollen recognition task using CNNpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceLas Vegas - USApt_PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage8pt_PT
oaire.citation.titleThe 2021 World Congress in Computer Science, Computer Engineering, and Applied Computing (CSCE 2021)pt_PT
person.familyNameMonteiro
person.familyNameRufino
person.givenNameFernando C.
person.givenNameJosé
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0002-1421-8006
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridH-9213-2016
person.identifier.scopus-author-id8986162600
person.identifier.scopus-author-id55947199100
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscovery1e24d2ce-a354-442a-bef8-eebadd94b385

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
The role of background.pdf
Size:
318.7 KB
Format:
Adobe Portable Document Format