Repository logo
 
Publication

Classification of olive cultivars using artificial neural networks

dc.contributor.authorPeres, António M.
dc.contributor.authorBaptista, Paula
dc.contributor.authorMalheiro, Ricardo
dc.contributor.authorDias, L.G.
dc.contributor.authorBento, Albino
dc.contributor.authorPereira, J.A.
dc.date.accessioned2014-10-16T13:48:41Z
dc.date.available2014-10-16T13:48:41Z
dc.date.issued2011
dc.description.abstractOlive fruit classification according to their cultivar is of major importance to guarantee varietal authenticity. Usually, non-supervised or supervised statistical tools (such as Principal Component Analysis or Linear Discriminant Analysis, respectively) are used for this purpose, based on several physico-chemical data, namely table olive fatty acids profiles, dietary fiber, sugar, organic acids and mineral nutrient contents. In this work, quantitative morphological parameters of fruit and endocarp were evaluated. Seventy samples, containing each one around 40 olives, of the six most representative olive cultivars of Portuguese northeast region (Cobrançosa, Cordovil, Madural, Negrinha de Freixo, Santulhana and Verdeal Transmontana) were selected. The samples were collected in different groves and during four crop years. The biometrical data was used together with a Multi layer Perceptron Artificial Neural Network allowing the implementation and validation of a classification model. Its performance was compared with that obtained using a linear discriminant analysis. The best results were obtained using artificial neural networks, especially for the external validation procedure implemented. The satisfactory results achieved, even when compared with previous published works, regarding olive cultivar's classification, show that the neural networks could be used by olive oil producers as a preventive and effective tool for avoiding adulterations o f Protected Designation of Origin or monovarietal olive oils with olives of non-allowed cultivars.por
dc.identifier.citationPeres, António M.; Baptista, Paula; Malheiro, Ricardo; Dias, L.G.; Bento, Albino; Pereira, J.A. (2011). Classification of olive cultivars using artificial neural networks. In Olivebioteq 2011. Chania, Greecepor
dc.identifier.urihttp://hdl.handle.net/10198/10869
dc.language.isoengpor
dc.peerreviewednopor
dc.titleClassification of olive cultivars using artificial neural networkspor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceGreecepor
oaire.citation.titleOlivebioteq 2011por
person.familyNamePeres
person.familyNameBaptista
person.familyNameMalheiro
person.familyNameDias
person.familyNameBento
person.familyNamePereira
person.givenNameAntónio M.
person.givenNamePaula
person.givenNameRicardo
person.givenNameLuís G.
person.givenNameAlbino
person.givenNameJosé Alberto
person.identifier107333
person.identifier.ciencia-idCF16-5443-F420
person.identifier.ciencia-id7D11-FE1E-CD0F
person.identifier.ciencia-id2F11-9092-FAAF
person.identifier.ciencia-idD516-325A-9AD7
person.identifier.ciencia-id611F-80B2-A7C1
person.identifier.orcid0000-0001-6595-9165
person.identifier.orcid0000-0001-6331-3731
person.identifier.orcid0000-0002-7342-0511
person.identifier.orcid0000-0002-1210-4259
person.identifier.orcid0000-0001-5215-785X
person.identifier.orcid0000-0002-2260-0600
person.identifier.ridI-8470-2012
person.identifier.ridN-9706-2016
person.identifier.ridL-6798-2014
person.identifier.scopus-author-id7102331969
person.identifier.scopus-author-id14051688000
person.identifier.scopus-author-id25650218300
person.identifier.scopus-author-id23569169900
person.identifier.scopus-author-id35247694000
person.identifier.scopus-author-id57204366348
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication7d93be47-8dc4-4413-9304-5b978773d3bb
relation.isAuthorOfPublication3f35226a-b17a-4f7d-8da1-3297105cbfe9
relation.isAuthorOfPublication0fa7974d-abd3-444b-9a7e-16d16530a0f7
relation.isAuthorOfPublicationeac8c166-4056-4ed0-8d8d-7ecb2c4481a5
relation.isAuthorOfPublication233115be-9d46-49d0-8b7d-2d64406d64a0
relation.isAuthorOfPublication7932162e-a2da-4913-b00d-17babbe51857
relation.isAuthorOfPublication.latestForDiscovery7932162e-a2da-4913-b00d-17babbe51857

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
23_2011_POSTER.pdf
Size:
727.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: