Repository logo
 
Publication

Systematic review of predictive maintenance practices in the manufacturing sector

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorBenhanifia, Abdeldjalil
dc.contributor.authorCheikh, Zied Ben
dc.contributor.authorOliveira, Paulo Moura
dc.contributor.authorValente, Antonio
dc.contributor.authorLima, José
dc.date.accessioned2025-07-11T09:29:31Z
dc.date.available2025-07-11T09:29:31Z
dc.date.issued2025
dc.description.abstractPredictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.eng
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Tech- nology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757 /2020) and SusTEC (LA/P/0007/2021). During the preparation of this work the author(s) used [Gramarly/ Quilbolt/chagpt] in order to [improve the language and correct the sentences and get an adequat analysis and relie information]. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
dc.identifier.citationBenhanifia, Abdeldjalil; Ben Cheikh, Zied; Oliveira, Paulo Moura; Valente, Antonio; Lima, José (2025). Systematic review of predictive maintenance practices in the manufacturing sector. Intelligent Systems with Applications. ISSN 2667-3053. 26, p. 1-17
dc.identifier.doi10.1016/j.iswa.2025.200501
dc.identifier.issn2667-3053
dc.identifier.urihttp://hdl.handle.net/10198/34664
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relation.ispartofIntelligent Systems with Applications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPredictive maintenance
dc.subjectFault diagnosis systems
dc.subjectArtificial intelligence in manufacturing
dc.subjectReal-time monitoring
dc.titleSystematic review of predictive maintenance practices in the manufacturing sectoreng
dc.typeworking paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage17
oaire.citation.startPage1
oaire.citation.titleIntelligent Systems with Applications
oaire.citation.volume26
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameLima
person.givenNameJosé
person.identifierR-000-8GD
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id55851941311
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S2667305325000274-main.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: