Repository logo
 
Publication

Biomedical microfluidic devices by using low-cost fabrication techniques: a review

dc.contributor.authorFaustino, Vera
dc.contributor.authorCatarino, Susana
dc.contributor.authorLima, Rui A.
dc.contributor.authorMinas, Graça
dc.date.accessioned2018-01-31T10:00:00Z
dc.date.accessioned2018-02-01T09:37:54Z
dc.date.available2018-01-31T10:00:00Z
dc.date.available2018-02-01T09:37:54Z
dc.date.issued2016
dc.description.abstractOne of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples.en_EN
dc.description.sponsorshipThe authorsacknowledgethe financial supportprovidedby PTDC/SAU-ENB/116929/2010andEXPL/EMS-SIS/2215/2013 from FCT (ScienceandTechnologyFoundation),COMPETE,QRENand European Union(FEDER).R.O.Rodrigues,D.PinhoandV.Faustino acknowledgerespectively,thePhDscholarshipsSFRH/BD/97658/ 2013,SFRH/BD/89077/2012andSFRH/BD/99696/2014Grantedby FCT.TheauthorsarealsoverygratefultoProfessorTakujiIshikawa and ProfessorTakamiYamaguchi(TohokuUniversity)forsup- porting thisresearchwork.
dc.description.versioninfo:eu-repo/semantics/publishedVersionen_EN
dc.identifier.citationFaustino, Vera; Catarino, Susana O.; Lima, Rui; Minas, Graça (2016). Biomedical microfluidic devices by using low-cost fabrication techniques: a review. Journal of Biomechanics. ISSN 0021-9290. 49, p. 2280-2292en_EN
dc.identifier.doi10.1016/j.jbiomech.2015.11.031en_EN
dc.identifier.issn0021-9290
dc.identifier.urihttp://hdl.handle.net/10198/15393
dc.language.isoeng
dc.peerreviewedyesen_EN
dc.relationMAGNETIC CARBON NANOSTRUCTURES AND STUDY OF THEIR TRANSPORT IN MICROFLUIDIC DEVICES FOR HYPERTHERMIA
dc.relationMicrofluidic system for cell separation and deformation assessment based on biomimetic and acoustofluidic methods
dc.subjectBiomedical microdevicesen_EN
dc.subjectBiomicrofluidicsen_EN
dc.subjectLow-costen_EN
dc.subjectNonlithographic techniqueen_EN
dc.subjectSoft lithographyen_EN
dc.titleBiomedical microfluidic devices by using low-cost fabrication techniques: a reviewen_EN
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMAGNETIC CARBON NANOSTRUCTURES AND STUDY OF THEIR TRANSPORT IN MICROFLUIDIC DEVICES FOR HYPERTHERMIA
oaire.awardTitleMicrofluidic system for cell separation and deformation assessment based on biomimetic and acoustofluidic methods
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/COMPETE/EXPL%2FEMS-SIS%2F2215%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F97658%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F89077%2F2012/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBD%2F99696%2F2014/PT
oaire.fundingStreamCOMPETE
oaire.fundingStreamSFRH
oaire.fundingStreamFARH
person.familyNameLima
person.givenNameRui A.
person.identifier.ciencia-idEE12-C3FB-349D
person.identifier.orcid0000-0003-3428-637X
person.identifier.ridH-5157-2016
person.identifier.scopus-author-id18437397800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccessen_EN
rcaap.typearticleen_EN
relation.isAuthorOfPublication7b50c499-8095-4f4f-8b1b-fa7388e4ff62
relation.isAuthorOfPublication.latestForDiscovery7b50c499-8095-4f4f-8b1b-fa7388e4ff62
relation.isProjectOfPublication7aa7bf1a-0dca-461e-90aa-9ca40cbedcb7
relation.isProjectOfPublication95f49ee8-5b1f-45de-b818-d9334a4d8d0e
relation.isProjectOfPublicationa703ea48-10f3-42ed-867e-2aae71b722e8
relation.isProjectOfPublication6011159d-ef39-4190-8961-d1fc00e91fdc
relation.isProjectOfPublication.latestForDiscovery6011159d-ef39-4190-8961-d1fc00e91fdc

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
24.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: