Repository logo
 
Publication

Comparative analysis between LDR and HDR images for automatic fruit recognition and counting

dc.contributor.authorPinho, Tatiana M.
dc.contributor.authorCoelho, João Paulo
dc.contributor.authorOliveira, Josenalde
dc.contributor.authorBoaventura-Cunha, José
dc.date.accessioned2017-08-31T13:24:41Z
dc.date.available2017-08-31T13:24:41Z
dc.date.issued2017
dc.description.abstractPrecision agriculture is gaining an increasing interest in the current farming paradigm. This new production concept relies on the use of information technology (IT) to provide a control and supervising structure that can lead to better management policies. In this framework, imaging techniques that provide visual information over the farming area play an important role in production status monitoring. As such, accurate representation of the gathered production images is amajor concern, especially if those images are used in detection and classification tasks.Real scenes, observed in natural environment, present high dynamic ranges that cannot be represented by the common LDR (Low Dynamic Range) devices. However, this issue can be handled by High Dynamic Range (HDR) images since they have the ability to store luminance information similarly to the human visual system. In order to prove their advantage in image processing, a comparative analysis between LDR and HDR images, for fruits detection and counting, was carried out.The obtained results show that the use of HDR images improves the detection performance to more than 30% when compared to LDR.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPinho, Tatiana M.; Coelho, J.P.; Oliveira, Josenalde; Boaventura-Cunha, José (2017). Comparative analysis between LDR and HDR images for automatic fruit recognition and counting. Journal of Sensors. ISSN 1687-725X. p. 1-12pt_PT
dc.identifier.doi10.1155/2017/7321950pt_PT
dc.identifier.eissn1687-7268
dc.identifier.issn1687-725X
dc.identifier.urihttp://hdl.handle.net/10198/14449
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHigh-dynamic-rangept_PT
dc.subjectTone reproductionpt_PT
dc.subjectSystempt_PT
dc.subjectScenespt_PT
dc.subjectYieldpt_PT
dc.subjectLocalizationpt_PT
dc.subjectDisplaypt_PT
dc.titleComparative analysis between LDR and HDR images for automatic fruit recognition and countingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage12pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleJOURNAL OF SENSORSpt_PT
person.familyNameCoelho
person.givenNameJoão Paulo
person.identifierR-001-EXZ
person.identifier.ciencia-idD61E-A586-7D4A
person.identifier.orcid0000-0002-7616-1383
person.identifier.ridJ-6887-2013
person.identifier.scopus-author-id55137039300
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2861f33b-b49a-421d-9bfa-92b4304d2668
relation.isAuthorOfPublication.latestForDiscovery2861f33b-b49a-421d-9bfa-92b4304d2668

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
7321950.pdf
Size:
9.25 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: