Repository logo
 
Publication

Computational intelligence applied to discriminate bee pollen quality and botanical origin

dc.contributor.authorGonçalves, Paulo J.S.
dc.contributor.authorEstevinho, Leticia M.
dc.contributor.authorPereira, Ana Paula
dc.contributor.authorSousa, João M.C.
dc.contributor.authorAnjos, Ofélia
dc.date.accessioned2018-02-19T10:00:00Z
dc.date.accessioned2018-07-31T15:22:34Z
dc.date.available2018-01-19T10:00:00Z
dc.date.available2018-07-31T15:22:34Z
dc.date.issued2018
dc.description.abstractThe aim of this work was to develop computational intelligence models based on neural networks (NN), fuzzy models (FM), and support vector machines (SVM) to predict physicochemical composition of bee pollen mixture given their botanical origin. To obtain the predominant plant genus of pollen (was the output variable), based on physicochemical composition (were the input variables of the predictive model), prediction models were learned from data. For the inverse case study, input/output variables were swapped. The probabilistic NN prediction model obtained 98.4% of correct classification of the predominant plant genus of pollen. To obtain the secondary and tertiary plant genus of pollen, the results present a lower accuracy. To predict the physicochemical characteristic of a mixture of bee pollen, given their botanical origin, fuzzy models proven the best results with small prediction errors, and variability lower than 10%.
dc.description.sponsorshipThis work was partly supported by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013, and partly funded by FCT I.P.: Centro de Estudos Florestais, a research unit funded by FCT (UID/AGR/UI0239/2013); strategic programme UID/ BIA/04050/2013 (POCI-01-0145-FEDER- 007569) and strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569). In addition, it was also funded by the ERDF through the COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI).
dc.description.versioninfo:eu-repo/semantics/publishedVersionen_EN
dc.identifier.citationGonçalves, Paulo J.S.; Estevinho, Letícia M.; Pereira, Ana Paula; Sousa, João M.C.; Anjos, Ofélia (2018). Computational intelligence applied to discriminate bee pollen quality and botanical origin. Food Chemistry. ISSN 0308-8146. 267, p. 36-42en_EN
dc.identifier.doi10.1016/j.foodchem.2017.06.014en_EN
dc.identifier.issn0308-8146
dc.identifier.urihttp://hdl.handle.net/10198/11989
dc.language.isoeng
dc.peerreviewedyesen_EN
dc.subjectBee pollenen_EN
dc.subjectBotanical originen_EN
dc.subjectFuzzy modellingen_EN
dc.subjectNeural networksen_EN
dc.subjectPhysical–chemical parametersen_EN
dc.subjectSupport vector machinesen_EN
dc.titleComputational intelligence applied to discriminate bee pollen quality and botanical originen_EN
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/Incentivo%2FAGR%2FUI0239%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEMS%2F50022%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FBIA%2F04050%2F2013/PT
oaire.fundingStream3599-PPCDT
oaire.fundingStream5876
oaire.fundingStream5876
person.familyNameEstevinho
person.familyNamePereira
person.givenNameLetícia M.
person.givenNameAna Paula
person.identifier.ciencia-idBA14-09D6-A406
person.identifier.ciencia-id1413-70AA-CDF6
person.identifier.orcid0000-0002-9249-1948
person.identifier.orcid0000-0003-1489-5207
person.identifier.scopus-author-id6506577664
person.identifier.scopus-author-id54401473200
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccessen_EN
rcaap.typearticleen_EN
relation.isAuthorOfPublication4a1d5ba2-1854-4ca5-89a4-73f35e964df9
relation.isAuthorOfPublicatione7df6eac-d667-415d-abdb-9fe17467475c
relation.isAuthorOfPublication.latestForDiscovery4a1d5ba2-1854-4ca5-89a4-73f35e964df9
relation.isProjectOfPublicationa99f3ce8-4682-40c8-8cd0-36dcde900247
relation.isProjectOfPublication50710c88-5cb6-45f8-8a08-22b46837eed8
relation.isProjectOfPublication78617fc7-4718-447c-a308-5b39e4818848
relation.isProjectOfPublication.latestForDiscovery78617fc7-4718-447c-a308-5b39e4818848

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
401.pdf
Size:
990.53 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: