Repository logo
 
Publication

Big data: business, technology, education, and science

dc.contributor.authorJohnson, Jeffrey
dc.contributor.authorTesei, Luca
dc.contributor.authorPiangerelli, Marco
dc.contributor.authorMerelli, Emanuela
dc.contributor.authorPaci, Riccardo
dc.contributor.authorStojanovic, Nedad
dc.contributor.authorLeitão, Paulo
dc.contributor.authorBarbosa, José
dc.contributor.authorAmador, Marco
dc.date.accessioned2020-03-30T09:10:45Z
dc.date.available2020-03-30T09:10:45Z
dc.date.issued2018
dc.description.abstractTransforming the latent value of big data into real value requires the great human intelligence and application of human-data scientists. Data scientists are expected to have a wide range of technical skills alongside being passionate self-directed people who are able to work easily with others and deliver high quality outputs under pressure. There are hundreds of university, commercial, and online courses in data science and related topics. Apart from people with breadth and depth of knowledge and experience in data science, we identify a new educational path to train “bridge persons” who combine knowledge of an organization’s business with sufficient knowledge and understanding of data science to “bridge” between non-technical people in the business with highly skilled data scientists who add value to the business. The increasing proliferation of big data and the great advances made in data science do not herald in an era where all problems can be solved by deep learning and artificial intelligence. Although data science opens up many commercial and social opportunities, data science must complement other science in the search for new theory and methods to understand and manage our complex world.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationJohnson, Jeffrey; Tesei, Luca; Piangerelli, Marco; Merelli, Emanuela; Paci, Riccardo; Stojanovic, Nedad; Leitão, Paulo; Barbosa, José ;Amador, Marco (2018). Big data: business, technology, education, and science. Ubiquity. ISSN 1530-2180. p. 1-13pt_PT
dc.identifier.doi10.1145/3158350pt_PT
dc.identifier.issn1530-2180
dc.identifier.urihttp://hdl.handle.net/10198/21170
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBig datapt_PT
dc.subjectData sciencept_PT
dc.titleBig data: business, technology, education, and sciencept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage13pt_PT
oaire.citation.issueJulypt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleUbiquitypt_PT
oaire.citation.volume2018pt_PT
person.familyNameLeitão
person.familyNameBarbosa
person.givenNamePaulo
person.givenNameJosé
person.identifierA-8390-2011
person.identifier609187
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.ciencia-id021B-4191-D8A5
person.identifier.orcid0000-0002-2151-7944
person.identifier.orcid0000-0003-3151-6686
person.identifier.ridA-5468-2011
person.identifier.scopus-author-id35584388900
person.identifier.scopus-author-id48360905400
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication0c76a063-ff3c-4db3-b6e7-36885020b399
relation.isAuthorOfPublication.latestForDiscovery0c76a063-ff3c-4db3-b6e7-36885020b399

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2018-ubiquity-DA-RE.pdf
Size:
666.76 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: