Publication
Identification of aphids using machine learning classifiers on UAV-based multispectral data
dc.contributor.author | Guimarães, Nathalie | |
dc.contributor.author | Pádua, Luís | |
dc.contributor.author | Sousa, Joaquim J. | |
dc.contributor.author | Bento, Albino | |
dc.contributor.author | Couto, Pedro | |
dc.date.accessioned | 2024-01-30T16:44:58Z | |
dc.date.available | 2024-01-30T16:44:58Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Almond trees in Portugal are susceptible to aphid infestation, which can result in reduced fruit production. To effectively tackle this issue, the combination of remote sensing (RS) data and machine learning (ML) classifiers can be used to accurately detect the presence of aphids. This study focuses in the implementation of ML classifiers and RS data analysis to identify aphids on almond trees, using high-resolution multispectral data collected through an unmanned aerial vehicle (UAV) in a Portuguese almond orchard. Four ML classifiers, kNN, SVM, RF and XGBoost, were employed and fine-tuned using vegetation indices derived from spectral data. The results revealed that the SVM classifier achieved an overall accuracy (OA) of 77%, followed by kNN with an OA of 74%, while XGBoost and RF achieved OAs of 71% and 69%, respectively. Consequently, this study demonstrates the viability of employing RS data and ML classifiers for aphid identification in almond orchards. | pt_PT |
dc.description.sponsorship | Financial support was provided by national funds through FCT – Portuguese Foundation for Science and Technology (UI/BD/150727/2020), under the Doctoral Programme “Agricultural Production Chains – from fork to farm” (PD/00122/2012) and from the European Social Funds and the Regional Operational Programme Norte 2020. This study was also supported by CITAB research unit (UIDB/04033/2020), Inov4Agro (LA/P/0126/2020) and by CIMO (UIDB/00690/2020). | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Guimarães, Nathalie; Pádua, Luís; Sousa, Joaquim J.; Bento, Albino; Couto, Pedro (2023). Identification of aphids using machine learning classifiers on UAV-based multispectral data. 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). p. 3462-3465. ISBN 979-8-3503-2010-7 | pt_PT |
dc.identifier.doi | 10.1109/IGARSS52108.2023.10281655 | pt_PT |
dc.identifier.isbn | 979-8-3503-2010-7 | |
dc.identifier.uri | http://hdl.handle.net/10198/29401 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | Aerial high-resolution imagery to assess almond orchard conditions | |
dc.relation | Ion beam modification of advanced wide bandgap semiconductor hetero- and nanostructures | |
dc.relation | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
dc.relation | Institute for innovation, capacity building and sustainability of agri-food production | |
dc.relation | Mountain Research Center | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Almond orchard | pt_PT |
dc.subject | Vegetation indices | pt_PT |
dc.subject | Machine learning | pt_PT |
dc.subject | Support vector machine | pt_PT |
dc.title | Identification of aphids using machine learning classifiers on UAV-based multispectral data | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Aerial high-resolution imagery to assess almond orchard conditions | |
oaire.awardTitle | Ion beam modification of advanced wide bandgap semiconductor hetero- and nanostructures | |
oaire.awardTitle | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
oaire.awardTitle | Institute for innovation, capacity building and sustainability of agri-food production | |
oaire.awardTitle | Mountain Research Center | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/POR_NORTE/UI%2FBD%2F150727%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/Investigador FCT/IF%2F00122%2F2012%2FCP0171%2FCT0001/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0126%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
oaire.citation.endPage | 3465 | pt_PT |
oaire.citation.startPage | 3462 | pt_PT |
oaire.citation.title | 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | pt_PT |
oaire.fundingStream | POR_NORTE | |
oaire.fundingStream | Investigador FCT | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Bento | |
person.givenName | Albino | |
person.identifier.ciencia-id | D516-325A-9AD7 | |
person.identifier.orcid | 0000-0001-5215-785X | |
person.identifier.rid | N-9706-2016 | |
person.identifier.scopus-author-id | 35247694000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 233115be-9d46-49d0-8b7d-2d64406d64a0 | |
relation.isAuthorOfPublication.latestForDiscovery | 233115be-9d46-49d0-8b7d-2d64406d64a0 | |
relation.isProjectOfPublication | 379f6576-df64-4575-94ed-ae2fa723a2a9 | |
relation.isProjectOfPublication | b962c5ee-d957-4edb-b24a-e8e99c15bea5 | |
relation.isProjectOfPublication | ac4fb709-719a-450b-8c96-17592d46f5e9 | |
relation.isProjectOfPublication | 3c81413c-6a3a-453a-bb53-9e883a270537 | |
relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
relation.isProjectOfPublication.latestForDiscovery | 3c81413c-6a3a-453a-bb53-9e883a270537 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Identification_of_Aphids_Using_Machine.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: