Repository logo
 
Publication

Hybrid optimisation and machine learning models for wind and solar data prediction

dc.contributor.authorAmoura, Yahia
dc.contributor.authorTorres, Santiago
dc.contributor.authorLima, José
dc.contributor.authorPereira, Ana I.
dc.date.accessioned2024-06-17T13:46:27Z
dc.date.available2024-06-17T13:46:27Z
dc.date.issued2023
dc.description.abstractThe exponential growth in energy demand is leading to massive energy consumption from fossil resources causing a negative effects for the environment. It is essential to promote sustainable solutions based on renewable energies infrastructures such as microgrids integrated to the existing network or as stand alone solution. Moreover, the major focus of today is being able to integrate a higher percentages of renewable electricity into the energy mix. The variability of wind and solar energy requires knowing the relevant long-term patterns for developing better procedures and capabilities to facilitate integration to the network. Precise prediction is essential for an adequate use of these renewable sources. This article proposes machine learning approaches compared to an hybrid method, based on the combination of machine learning with optimisation approaches. The results show the improvement in the accuracy of the machine learning models results once the optimisation approach is used.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAmoura, Yahia; Torres, Santiago; Lima, José; Pereira, Ana I. (2023). Hybrid optimisation and machine learning models for wind and solar data prediction. International Journal of Hybrid Intelligent Systems. ISSN 1448-5869. 19:1-2, p. 45-60pt_PT
dc.identifier.doi10.3233/HIS-230004pt_PT
dc.identifier.issn1448-5869
dc.identifier.urihttp://hdl.handle.net/10198/29905
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIOS Presspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectForecastingpt_PT
dc.subjectMachine learningpt_PT
dc.subjectOptimisationpt_PT
dc.subjectRenewable energypt_PT
dc.subjectSolar irradiationpt_PT
dc.subjectWind speedpt_PT
dc.titleHybrid optimisation and machine learning models for wind and solar data predictionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage60pt_PT
oaire.citation.issue1-2pt_PT
oaire.citation.startPage45pt_PT
oaire.citation.titleInternational Journal of Hybrid Intelligent Systemspt_PT
oaire.citation.volume19pt_PT
person.familyNameAmoura
person.familyNameLima
person.familyNamePereira
person.givenNameYahia
person.givenNameJosé
person.givenNameAna I.
person.identifierR-000-8GD
person.identifier.ciencia-id1C1C-915D-DB4E
person.identifier.ciencia-id6016-C902-86A9
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0002-8811-0823
person.identifier.orcid0000-0001-7902-1207
person.identifier.orcid0000-0003-3803-2043
person.identifier.ridL-3370-2014
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id55851941311
person.identifier.scopus-author-id15071961600
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication653c4356-dd18-4680-9774-da86a446d0e5
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication.latestForDiscovery653c4356-dd18-4680-9774-da86a446d0e5

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hybrid_Optimisation_and_Machine_Learning.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: