Repository logo
 
Publication

Sustainable short-term production planning optimization

dc.contributor.authorZanella, Fernando
dc.contributor.authorVaz, Clara B.
dc.date.accessioned2024-02-15T14:58:38Z
dc.date.available2024-02-15T14:58:38Z
dc.date.issued2023
dc.description.abstractThis study proposes a framework for short-term production planning of a Portuguese company operating as a tier 2 supplier in the automotive sector. The framework is intended to support the decision-making process regarding a single progressive hydraulic press, which is used to manufacture cold-stamped parts for exhaust systems. The framework consists of two sequential levels: (1) a Mixed-Integer Linear Programming (MILP) model to determine the optimal production quantities per week while minimizing the total cost; (2) a dynamic production sequencing rule for scheduling operations on the hydraulic press. The two levels are combined and implemented in Excel, where the MILP model is solved using the Solver add-in, and the second level uses the optimal production quantities as inputs to determine the production sequence using a dynamic priority rule. To validate the framework, a proposed optimal plan was compared to a real plan executed by the company, and it was found that the framework could save up to 22.1% of the total cost observed in reality while still satisfying demand. To address uncertainties, the framework requires a rolling weekly planning horizon.pt_PT
dc.description.sponsorshipThis work has been supported by Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationZanella, Fernando; Vaz, Clara B. (2023). Sustainable short-term production planning optimization. SN Computer Science. ISSN 2662-995X. 4:6, p. 1-12pt_PT
dc.identifier.doi10.1007/s42979-023-02261-7pt_PT
dc.identifier.eissn2661-8907
dc.identifier.issn2662-995X
dc.identifier.urihttp://hdl.handle.net/10198/29487
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMixed-integer linear programmingpt_PT
dc.subjectShort-term production planningpt_PT
dc.subjectResponsible productionpt_PT
dc.titleSustainable short-term production planning optimizationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage12pt_PT
oaire.citation.issue6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleSN Computer Sciencept_PT
oaire.citation.volume4pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVaz
person.givenNameClara B.
person.identifierR-001-FQC
person.identifier.ciencia-id9611-3386-E516
person.identifier.orcid0000-0001-9862-6068
person.identifier.ridF-1519-2016
person.identifier.scopus-author-id56352045500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication34bc350c-28d9-4b06-9874-b2b0dba58d1d
relation.isAuthorOfPublication.latestForDiscovery34bc350c-28d9-4b06-9874-b2b0dba58d1d
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s42979-023-02261-7.pdf
Size:
938.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: