Repository logo
 
Publication

Genetic algorithm for flexible job shop scheduling problem - a case study

dc.contributor.authorFerreira, Adriano
dc.contributor.authorGuevara, Gabriela
dc.contributor.authorPereira, Ana I.
dc.contributor.authorBarbosa, José
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2018-05-02T15:29:20Z
dc.date.available2018-05-02T15:29:20Z
dc.date.issued2015
dc.description.abstractThis work proposes the impact assessment of the workers in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work, a real enterprise was studied. The problem consists in finding the workers operations schedule, taking into account the precedence constraints. The scheduling of operations is a complex problem consisting in determining the optimal allocation of tasks to resources under a set of constraints, which in enterprise business assumes a critical issue. Solving this issue requires the use of optimization techniques that guarantees the achievement of acceptable solutions as optimized as possible. In industrial environments, characterized by the frequent occurrence of unplanned disturbances and changes, the optimal plan becomes inapplicable and obsolete very fast. This introduces a new requirement to the use of optimization techniques, where besides the quality of the calculated solution, it is also crucial to consider the time to compute the solution. This paper studies the application of a genetic algorithm approach to determine the scheduling in an industrial factory plant organized as flexible job shop problem. Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the traditional Job Shop Scheduling Problem, differing from this in the sense that some workers may be capable of performing more than one type of tasks. Additionally, for each task there is at least, one worker that is capable of performing the operation. The main objective is to minimize the finish time of the last task completed in the schedule.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, Adriano; Guevara, Gabriela; Pereira, Ana I.; Barbosa, José; Leitão, Paulo (2014). Genetic algorithm for flexible job shop scheduling problem - a case study. In II Encontro de Jovens Investigadores do IPB. Bragançapt_PT
dc.identifier.urihttp://hdl.handle.net/10198/17566
dc.language.isoporpt_PT
dc.peerreviewedyespt_PT
dc.publisherIPBpt_PT
dc.relation.publisherversionhttps://bibliotecadigital.ipb.pt/handle/10198/10366pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectScheduling problempt_PT
dc.subjectGenetic algorithmpt_PT
dc.titleGenetic algorithm for flexible job shop scheduling problem - a case studypt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceBragançapt_PT
oaire.citation.titleII Encontro de Jovens Investigadores do IPBpt_PT
person.familyNameFerreira
person.familyNamePereira
person.familyNameBarbosa
person.familyNameLeitão
person.givenNameAdriano
person.givenNameAna I.
person.givenNameJosé
person.givenNamePaulo
person.identifier609187
person.identifierA-8390-2011
person.identifier.ciencia-id671B-E042-481D
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.ciencia-id021B-4191-D8A5
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0002-3680-1171
person.identifier.orcid0000-0003-3803-2043
person.identifier.orcid0000-0003-3151-6686
person.identifier.orcid0000-0002-2151-7944
person.identifier.ridF-3168-2010
person.identifier.ridA-5468-2011
person.identifier.scopus-author-id7402999589
person.identifier.scopus-author-id15071961600
person.identifier.scopus-author-id48360905400
person.identifier.scopus-author-id35584388900
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8ec73a6b-248e-4072-9766-fc7992cfc2d5
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication0c76a063-ff3c-4db3-b6e7-36885020b399
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery8ec73a6b-248e-4072-9766-fc7992cfc2d5

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2014_EJI(3).pdf
Size:
171.86 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: