Repository logo
 
Publication

Anosov Diffeomorphisms and γ -Tilings

dc.contributor.authorAlmeida, João P.
dc.contributor.authorPinto, Alberto A.
dc.date.accessioned2018-01-31T10:00:00Z
dc.date.accessioned2018-02-01T09:37:56Z
dc.date.available2018-01-31T10:00:00Z
dc.date.available2018-02-01T09:37:56Z
dc.date.issued2016
dc.description.abstractWe consider a toral Anosov automorphism G γ : T γ → T γ given by G γ (x, y) = (ax+ y, x) in the < v, w > base, where a∈ N\ { 1 } , γ= 1 / (a+ 1 / (a+ 1 / …)) , v= (γ, 1) and w= (- 1 , γ) in the canonical base of R 2 and T γ = R 2 / (vZ× wZ). We introduce the notion of γ-tilings to prove the existence of a one-to-one correspondence between (i) marked smooth conjugacy classes of Anosov diffeomorphisms, with invariant measures absolutely continuous with respect to the Lebesgue measure, that are in the isotopy class of G γ ; (ii) affine classes of γ-tilings; and (iii) γ-solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences.en_EN
dc.description.versioninfo:eu-repo/semantics/publishedVersionen_EN
dc.identifier.citationAlmeida, João P.; Pinto, Alberto A. (2016). Anosov Diffeomorphisms and γ -Tilings. Communications in Mathematical Physics. ISSN 0010-3616. 345, p. 435-456en_EN
dc.identifier.doi10.1007/s00220-016-2677-9en_EN
dc.identifier.issn0010-3616
dc.identifier.urihttp://hdl.handle.net/10198/15395
dc.language.isoeng
dc.peerreviewedyesen_EN
dc.titleAnosov Diffeomorphisms and γ -Tilingsen_EN
dc.typejournal article
dspace.entity.typePublication
person.familyNameAlmeida
person.givenNameJoão P.
person.identifierR-000-K6T
person.identifier.ciencia-id1C14-D6B1-6A78
person.identifier.orcid0000-0002-1286-2527
person.identifier.ridN-8243-2013
person.identifier.scopus-author-id54956738400
rcaap.rightsopenAccessen_EN
rcaap.typearticleen_EN
relation.isAuthorOfPublicationd51506e1-376c-4c70-b68b-f527b54440d2
relation.isAuthorOfPublication.latestForDiscoveryd51506e1-376c-4c70-b68b-f527b54440d2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
26.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: