Publicação
Impact of hyper-parameter tuning on CNN accuracy in agricultural image classification
| datacite.subject.fos | Ciências Agrárias::Agricultura, Silvicultura e Pescas | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.sdg | 04:Educação de Qualidade | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| datacite.subject.sdg | 12:Produção e Consumo Sustentáveis | |
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Costa, Lino | |
| dc.contributor.author | Hendrix, Eligius M.T. | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2025-07-10T09:27:27Z | |
| dc.date.available | 2025-07-10T09:27:27Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This study explores the impact of hyper-parameter optimization on the performance of convolutional neural networks (CNNs) for olive cultivar classification using transfer learning. Pre-trained ImageNet models such as VGG16, InceptionV3, and ResNet50 were adapted to a proprietary dataset, with VGG16 selected for detailed evaluation. Key hyper-parameters, including layer count, neurons per layer, dropout rate, learning rate, and batch size, were tuned using random search. The best configuration achieved a validation accuracy of 87.5%, significantly outperforming the control model. Sensitivity analyses with Morris and Sobol methods identified the number of layers as the most influential factor, followed by dropout and learning rates through interaction effects. These findings demonstrate the importance of tailoring CNN architecture and regularization settings to the problem domain. These results underscore the importance of tuning architectural depth and regularization mechanisms for performance optimization. As a practical guideline, models with fewer layers and intermediate dropout levels demonstrated higher robustness and generalization, offering an effective strategy for adapting CNNs to agricultural classification tasks. | eng |
| dc.description.sponsorship | This work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UID/05757 (DOI: https://doi.org/10.54499/UIDB/05757/2020 and DOI: https://doi.org/10.54499/UIDP/05757/2020), SusTEC, LA/P/0007/2020 (DOI: https://doi.org/10.54499/LA/P/0007/2020) and Algoritmi UIDB/00319/2020. | |
| dc.identifier.citation | Mendes, João; Lima, José; Costa, Lino; Hendrix, Eligius M.T.; Pereira, Ana I. (2025). Impact of hyper-parameter tuning on CNN accuracy in agricultural image classification. Smart Agricultural Technology. ISSN 2772-3755. | |
| dc.identifier.doi | 10.1016/j.atech.2025.101016 | |
| dc.identifier.issn | 2772-3755 | |
| dc.identifier.uri | http://hdl.handle.net/10198/34657 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier BV | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | ALGORITMI Research Center | |
| dc.relation.ispartof | Smart Agricultural Technology | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | |
| dc.subject | Hyper-parameter optimization | |
| dc.subject | Convolutional neural networks | |
| dc.subject | Sensitivity analysis | |
| dc.title | Impact of hyper-parameter tuning on CNN accuracy in agricultural image classification | |
| dc.type | journal article | |
| dcterms.references | https://doi.org/10.34620/dadosipb/TVYE8K | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | ALGORITMI Research Center | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Smart Agricultural Technology | |
| oaire.citation.volume | 11 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Mendes | |
| person.familyName | Lima | |
| person.familyName | Pereira | |
| person.givenName | João | |
| person.givenName | José | |
| person.givenName | Ana I. | |
| person.identifier | 2726655 | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | 0d98f999-8fd3-46a8-8a71-a7ff478a1207 | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
