Repository logo
 
Publication

Analyses of pandemics’ quantitative data and economic indicators

datacite.subject.fosCiências Sociais::Geografia Económica e Social
datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorCarvalho, Kathleen
dc.contributor.authorReis, Luis Paulo
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2025-07-04T10:51:30Z
dc.date.available2025-07-04T10:51:30Z
dc.date.issued2025
dc.description.abstractThe proposed work is a study that attempts to evaluate the financial impacts of pandemic mitigation strategies in order to be part of a central model that forecasts different scenarios in pandemic situations considering the impact of mitigation procedures in the Economic System and Healthcare System. Economic fluctuations impose a more significant challenge on prediction models, and pandemic modeling methodologies are primarily concerned with the variability of epidemic features, the efficiency of control measures over time, and the development of different viral variants. In this context, this paper correlates economic indicators with quantitative parameters of the last three respiratory virus pandemics, specifically the GDP and the unemployment rates, with a sample encompassing three European countries, the United Kingdom (UK), France, and Germany, that pass through the pandemics under study. The results provide intriguing information, such as the moderated and weak correlation factor between deaths with GDP in the Spanish flu and Swine flu, and the WWI and the 2009 crises can explain which. On the other hand, the correlation factors associated with COVID-19 show a weak to moderate correlation parameter with GDP and unemployment rates but present interesting numbers when the number of people fully vaccinated is compared with GDP. Also, as the correlation factor does not presente a strong relation between daily deaths and GDP, this indicates a necessity for comparison with other economic parameters.eng
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). Also, the researcher Kathleen Carvalho is grateful to the Foundation for Science and Technology (FCT, Portugal) support with the Ph.D. scholarship 2023.05134.BD
dc.identifier.citationCarvalho, Kathleen; Reis, Luis Paulo; Teixeira, João Paulo (2025). Analyses of pandemics’ quantitative data and economic indicators. Procedia Computer Science. ISSN 1877-0509. 256, p. 538-546
dc.identifier.doi10.1016/j.procs.2025.02.150
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/34642
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relation.ispartofProcedia Computer Science
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectGross Domestic Product
dc.subjectPandemics
dc.subjectEconomic parameters
dc.subjectCorrelation Analysis
dc.subjectCOVID-19
dc.subjectSwine Flu
dc.subjectH2N2
dc.subjectH1N1
dc.subjectH3N2
dc.subjectSARS
dc.titleAnalyses of pandemics’ quantitative data and economic indicatorseng
dc.typeworking paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage546
oaire.citation.startPage538
oaire.citation.titleProcedia Computer Science
oaire.citation.volume256
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarvalho
person.givenNameKathleen
person.identifier.ciencia-idE61F-8971-5FA1
person.identifier.orcid0000-0002-8623-7943
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication95e4ee5b-6232-45f4-a17d-465e70038188
relation.isAuthorOfPublication.latestForDiscovery95e4ee5b-6232-45f4-a17d-465e70038188
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1877050925005071-main.pdf
Size:
960.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: