Publication
Predicting the probability of occupational accidents occurrence in a Portuguese retail company
| datacite.subject.fos | Engenharia e Tecnologia::Outras Engenharias e Tecnologias | |
| datacite.subject.fos | Ciências Naturais::Outras Ciências Naturais | |
| datacite.subject.sdg | 08:Trabalho Digno e Crescimento Económico | |
| dc.contributor.author | Sena, Inês | |
| dc.contributor.author | Silva, Felipe Gustavo Soares da | |
| dc.contributor.author | Braga, Ana Cristina | |
| dc.contributor.author | Fernandes, Florbela P. | |
| dc.contributor.author | Vaz, Clara B. | |
| dc.contributor.author | Pacheco, Maria F. | |
| dc.contributor.author | Novais, Paulo | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2025-12-12T12:21:04Z | |
| dc.date.available | 2025-12-12T12:21:04Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Workplace accidents are a global problem impacting companies and society, as employee well-being and productivity/profit can be affected. Portugal ranks fifth among European Union countries despite efforts to reduce their frequency. Predictive solutions have demonstrated promising results in several economic sectors, but the retail sector, the country's third-largest in accident records, remains unexplored. This study proposes a predictive model based on the Multilayer Perceptron (MLP) algorithm to calculate the probability of risk situations occurring in a retail company. Ten databases provided by the company were analyzed and combined into a single dataset using impact scores. The predictive model was developed to predict risk situations in all the company's stores throughout two working days, the current and the next, and the four working shifts. The predictive model was implemented and tested in an integrated system for nine months and achieved 92% accuracy and a 29% precision rate in identifying risk situations. It is concluded that this approach provides a practical solution to assist companies and occupational health and safety teams prevent and minimize workplace accidents, contributing to increased safety and well-being. | eng |
| dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI UID/05757 (DOI: 10.54499/UIDB/05757/2020) and SusTEC LA/P/0007/2021 (DOI: 10.54499/LA/P/0007/2020). This work has been supported by NORTE-01-0247-FEDER-072598 iSafety: Intelligent system for occupational safety and well-being in the retail sector. Inês Sena was supported by FCT , Portugal PhD grant UI/BD/153348/2022. Also, thanks to the Mountains Research Collaborative Laboratory (MORE CoLAB) for letting us test the algorithm in the intelligent system iSafety developed for them. | |
| dc.identifier.citation | Sena, Inês; Silva, Felipe G.;Braga, Ana Cristina; Fernandes, Florbela P.; Vaz, Clara B.; Pacheco, Maria F.;Novais, Paulo; Lima, José, Pereira, Ana I. (2025). Predicting the probability of occupational accidents occurrence in a Portuguese retail company. Safety Science. ISSN 0925-7535. 192 | |
| dc.identifier.doi | 10.1016/j.ssci.2025.106975 | |
| dc.identifier.issn | 0925-7535 | |
| dc.identifier.uri | http://hdl.handle.net/10198/35214 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | Intelligent system for occupational safety in retail sector | |
| dc.relation.ispartof | Safety Science | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject | Data mining | |
| dc.subject | Machine learning | |
| dc.subject | Occupational accidents | |
| dc.subject | Predictive analysis | |
| dc.subject | Retail sector | |
| dc.title | Predicting the probability of occupational accidents occurrence in a Portuguese retail company | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | Intelligent system for occupational safety in retail sector | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/UI%2FBD%2F153348%2F2022/PT | |
| oaire.citation.title | Safety Science | |
| oaire.citation.volume | 192 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | OE | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Sena | |
| person.familyName | Fernandes | |
| person.familyName | Vaz | |
| person.familyName | Pacheco | |
| person.familyName | Lima | |
| person.familyName | Pereira | |
| person.givenName | Inês | |
| person.givenName | Florbela P. | |
| person.givenName | Clara B. | |
| person.givenName | Maria F. | |
| person.givenName | José | |
| person.givenName | Ana I. | |
| person.identifier | R-001-FQC | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | DC10-817D-21B5 | |
| person.identifier.ciencia-id | 501D-6FD0-CC53 | |
| person.identifier.ciencia-id | 9611-3386-E516 | |
| person.identifier.ciencia-id | F319-DAC3-8F15 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-4995-4799 | |
| person.identifier.orcid | 0000-0001-9542-4460 | |
| person.identifier.orcid | 0000-0001-9862-6068 | |
| person.identifier.orcid | 0000-0001-7915-0391 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | F-1519-2016 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57222722951 | |
| person.identifier.scopus-author-id | 35179471000 | |
| person.identifier.scopus-author-id | 56352045500 | |
| person.identifier.scopus-author-id | 36802474600 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 395724d8-6b40-41f1-a6d5-7be1ebc19d22 | |
| relation.isAuthorOfPublication | 1f7a9fde-7a4d-4b2c-8f9d-dab571163c33 | |
| relation.isAuthorOfPublication | 34bc350c-28d9-4b06-9874-b2b0dba58d1d | |
| relation.isAuthorOfPublication | e56596ca-3238-4fde-ace1-abb363a222e8 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | 395724d8-6b40-41f1-a6d5-7be1ebc19d22 | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | 02e24118-f0f7-4012-a08b-cbe86c9c5958 | |
| relation.isProjectOfPublication.latestForDiscovery | d0a17270-80a8-4985-9644-a04c2a9f2dff |
