Repository logo
 
Publication

A machine learning approach for enhanced glucose prediction in biosensors

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorAbreu, António
dc.contributor.authorOliveira, Daniela dos Santos
dc.contributor.authorVinagre, Inês
dc.contributor.authorCavouras, Dionisios
dc.contributor.authorAlves, Joaquim A.
dc.contributor.authorPereira, Ana I.
dc.contributor.authorLima, Jose
dc.contributor.authorMoreira, Felismina T. C.
dc.date.accessioned2025-06-27T09:46:23Z
dc.date.available2025-06-27T09:46:23Z
dc.date.issued2025
dc.description.abstractThe detection of glucose is crucial for diagnosing diseases such as diabetes and enables timely medical intervention. In this study, a disposable enzymatic screen-printed electrode electrochemical biosensor enhanced with machine learning (ML) for quantifying glucose in serum is presented. The platinum working surface was modified by chemical adsorption with biographene (BGr) and glucose oxidase, and the enzyme was encapsulated in polydopamine (PDP) by electropolymerisation. Electrochemical characterisation and morphological analysis (scanning and transmission electron microscopy) confirmed the modifications. Calibration curves in Cormay serum (CS) and selectivity tests with chronoamperometry were used to evaluate the biosensor’s performance. Non-linear ML regression algorithms for modelling glucose concentration and calibration parameters were tested to find the best-fit model for accurate predictions. The biosensor with BGr and enzyme encapsulation showed excellent performance with a linear range of 0.75–40 mM, a correlation of 0.988, and a detection limit of 0.078 mM. Of the algorithms tested, the decision tree accurately predicted calibration parameters and achieved a coefficient of determination above 0.9 for most metrics. Multilayer perceptron models effectively predicted glucose concentration with a coefficient of determination of 0.828, demonstrating the synergy of biosensor technology and ML for reliable glucose detection.por
dc.description.sponsorshipThe authors acknowledge the financial support from the IBEROS+ project (Instituto de Biofabricación en Red para el Envejecimiento Saludable, INTERREG POCTEP/0072_IBEROS_MAIS_1_E) within the cooperation region of Galicia/Spain and North of Portugal. Additionally, they would like to thank the partial support from the Portuguese Foundation for Science and Technology (FCT), through grants UIDB/04730/2020 and NotUIDP/04730/2020
dc.identifier.citationAbreu, António; Oliveira, Daniela dos Santos; Cavouras, Dionisios; Alves, Joaquim A.; Pereira, Ana I.; Lima, Jose; Moreira, Felismina T. C. (2025). A machine learning approach for enhanced glucose prediction in biosensors. Chemosensors. ISSN 2227-9040. 13:2, p. 1-17
dc.identifier.doi10.3390/chemosensors13020052
dc.identifier.issn2227-9040
dc.identifier.urihttp://hdl.handle.net/10198/34628
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation04730/2020
dc.relation.ispartofChemosensors
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectEnzymatic biosensor
dc.subjectGlucose
dc.subjectElectrochemistry
dc.subjectMachine learning
dc.titleA machine learning approach for enhanced glucose prediction in biosensorspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage17
oaire.citation.issue2
oaire.citation.startPage1
oaire.citation.titleChemosensors
oaire.citation.volume13
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNamePereira
person.familyNameLima
person.givenNameAna I.
person.givenNameJose
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0003-3803-2043
person.identifier.orcid0000-0002-3666-1439
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id15071961600
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication51292fe4-0d7a-4427-9499-6ccde02b78bc
relation.isAuthorOfPublication.latestForDiscoverye9981d62-2a2b-4fef-b75e-c2a14b0e7846

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
chemosensors-13-00052-v2.pdf
Size:
4.54 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: