Logo do repositório
 
Publicação

Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

dc.contributor.authorCastro, Gabriel G.R.
dc.contributor.authorBerger, Guido
dc.contributor.authorCantieri, Álvaro R.
dc.contributor.authorTeixeira, Marco
dc.contributor.authorLima, José
dc.contributor.authorPereira, Ana I.
dc.contributor.authorPinto, Milena F.
dc.date.accessioned2023-02-22T16:09:54Z
dc.date.available2023-02-22T16:09:54Z
dc.date.issued2023
dc.description.abstractUnmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.pt_PT
dc.description.sponsorshipThe authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCastro, Gabriel G.R.; Berger, Guido S.; Cantieri, Alvaro; Teixeira, Marco; Lima, José; Pereira, Ana I.; Pinto, Milena F. (2023). Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs. Agriculture.pt_PT
dc.identifier.doi10.3390/agriculture13020354pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27106
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAerial robotspt_PT
dc.subjectMultiple robotspt_PT
dc.subjectPlanningpt_PT
dc.subjectDynamic environmentpt_PT
dc.subjectPrecision agriculturept_PT
dc.titleAdaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.titleAgriculturept_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBerger
person.familyNameLima
person.familyNamePereira
person.givenNameGuido
person.givenNameJosé
person.givenNameAna I.
person.identifierR-000-8GD
person.identifier.ciencia-id931A-887B-D75D
person.identifier.ciencia-id6016-C902-86A9
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0002-4100-1494
person.identifier.orcid0000-0001-7902-1207
person.identifier.orcid0000-0003-3803-2043
person.identifier.ridL-3370-2014
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id55851941311
person.identifier.scopus-author-id15071961600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationaf502b94-c812-4efb-abb5-4d61a678a06b
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication.latestForDiscoverye9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
agriculture-13-00354-v2 (1).pdf
Tamanho:
5.36 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: