Repository logo
 
Publication

Intramuscular fat prediction using color and image analysis of bísaro pork breed

dc.contributor.authorTeixeira, Alfredo
dc.contributor.authorSilva, Severiano
dc.contributor.authorHasse, Marianne Cristina Goncalves
dc.contributor.authorAlmeida, José M.H.
dc.contributor.authorDias, L.G.
dc.date.accessioned2018-02-19T10:00:00Z
dc.date.accessioned2021-11-22T14:46:40Z
dc.date.available2018-01-19T10:00:00Z
dc.date.available2021-11-22T14:46:40Z
dc.date.issued2021
dc.description.abstractThis work presents an analytical methodology to predict meat juiciness (discriminant semi-quantitative analysis using groups of intervals of intramuscular fat) and intramuscular fat (regression analysis) in Longissimus thoracis et lumborum (LTL) muscle of Bísaro pigs using as independent variables the animal carcass weight and parameters from color and image analysis. These are non-invasive and non-destructive techniques which allow development of rapid, easy and inexpensive methodologies to evaluate pork meat quality in a slaughterhouse. The proposed predictive supervised multivariate models were non-linear. Discriminant mixture analysis to evaluate meat juiciness by classified samples into three groups—0.6 to 1.1%; 1.25 to 1.5%; and, greater than 1.5%. The obtained model allowed 100% of correct classifications (92% in cross-validation with seven-folds with five repetitions). Polynomial support vector machine regression to determine the intramuscular fat presented R2 and RMSE values of 0.88 and 0.12, respectively in cross-validation with seven-folds with five repetitions. This quantitative model (model’s polynomial kernel optimized to degree of three with a scale factor of 0.1 and a cost value of one) presented R2 and RSE values of 0.999 and 0.04, respectively. The overall predictive results demonstrated the relevance of photographic image and color measurements of the muscle to evaluate the intramuscular fat, rarther than the usual time-consuming and expensive chemical analysis.en_EN
dc.description.sponsorshipWork included in the Portuguese PRODER research Project BISOPORC—Pork extensive production of Bísara breed, in two alternative systems: fattening on concentrate vs. chesnut. The CIMO authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020) and are members of the Healthy Meat network by (CYTED-119RT0568). The CECAV authors are thankful to the project UIDB/CVT/00772/2020 funded by the Foundation for Science and Technology (FCT, Portugal). The authors are grateful to Laboratory of Carcass and Meat Quality of Agriculture School of Polytechnic Institute of Bragança “Cantinho do Alfredo”.
dc.description.versioninfo:eu-repo/semantics/publishedVersionen_EN
dc.identifier.citationTeixeira, Alfredo; Silva, Severiano R.; Hasse, Marianne; Almeida, José M.H.; Dias, Luis (2021). Intramuscular fat prediction using color and image analysis of bísaro pork breed. Foods. ISSN 2304-8158 . 10:1, p. 1-12en_EN
dc.identifier.doi10.3390/foods10010143en_EN
dc.identifier.issn2304-8158
dc.identifier.urihttp://hdl.handle.net/10198/24275
dc.language.isoeng
dc.peerreviewedyesen_EN
dc.relationUIDB/CVT/00772/2020
dc.relationMountain Research Center
dc.subjectBísaro porken_EN
dc.subjectImage analysisen_EN
dc.subjectIntramuscular faten_EN
dc.subjectPredictionen_EN
dc.titleIntramuscular fat prediction using color and image analysis of bísaro pork breeden_EN
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMountain Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameTeixeira
person.familyNameDias
person.givenNameAlfredo
person.givenNameLuís G.
person.identifier958487
person.identifier.ciencia-id2A1A-FF0C-185B
person.identifier.ciencia-id2F11-9092-FAAF
person.identifier.orcid0000-0003-4607-4796
person.identifier.orcid0000-0002-1210-4259
person.identifier.ridG-4118-2011
person.identifier.scopus-author-id56195849200
person.identifier.scopus-author-id23569169900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccessen_EN
rcaap.typearticleen_EN
relation.isAuthorOfPublication27cc89a2-6661-4d8d-a727-21109c04a74e
relation.isAuthorOfPublicationeac8c166-4056-4ed0-8d8d-7ecb2c4481a5
relation.isAuthorOfPublication.latestForDiscoveryeac8c166-4056-4ed0-8d8d-7ecb2c4481a5
relation.isProjectOfPublication29718e93-4989-42bb-bcbc-4daff3870b25
relation.isProjectOfPublication.latestForDiscovery29718e93-4989-42bb-bcbc-4daff3870b25

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
144.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: