Repository logo
 
Publication

Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies

dc.contributor.authorAstray, Gonzalo
dc.contributor.authorAlbuquerque, Bianca R.
dc.contributor.authorPrieto Lage, Miguel A.
dc.contributor.authorSimal-Gandara, Jesus
dc.contributor.authorFerreira, Isabel C.F.R.
dc.contributor.authorBarros, Lillian
dc.date.accessioned2018-02-19T10:00:00Z
dc.date.accessioned2021-03-18T14:49:05Z
dc.date.available2018-01-19T10:00:00Z
dc.date.available2021-03-18T14:49:05Z
dc.date.issued2020
dc.description.abstractArbutus unedo L. (strawberry tree) has showed considerable content in phenolic compounds, especially flavan-3-ols (catechin, gallocatechin, among others). The interest of flavan-3-ols has increased due their bioactive actions, namely antioxidant and antimicrobial activities, and by association of their consumption to diverse health benefits including the prevention of obesity, cardiovascular diseases or cancer. These compounds, mainly catechin, have been showed potential for use as natural preservative in foodstuffs; however, their degradation is increased by pH and temperature of processing and storage, which can limit their use by food industry. To model the degradation kinetics of these compounds under different conditions of storage, three kinds of machine learning models were developed: i) random forest, ii) support vector machine and iii) artificial neural network. The selected models can be used to track the kinetics of the different compounds and properties under study without the prior knowledge requirement of the reaction system.en_EN
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO, Portugal (UIDB/00690/2020); L. Barros thanks the national funding by FCT, P.I., through the institutional scientific employment program-contract. The authors are also grateful to FEDER-Interreg VA España-Portugal (POCTEP) programme for financial support through the project 0377_Iberphenol_6_E and TRANSCoLAB 0612_TRANS_CO_LAB_2_P. G. Astray thanks to the University of Vigo for his contract “Programa de retención de talento investigador da Universidade de Vigo para o 2018” with budget application 0000 131H TAL 641. M.A. Prieto thanks to the MICINN for the financial support for the Ramón and Cajal grant. G. Astray thanks to RapidMiner GmbH. for the Free and Educational version of RapidMiner Studio software.
dc.description.versioninfo:eu-repo/semantics/publishedVersionen_EN
dc.identifier.citationAstray, G.; Albuquerque, B. R.; Prieto, M. A.; Simal-Gandara, J.; Ferreira, I. C.F.R.; Barros, L. (2020). Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies. Food Chemistry. ISSN 0308-8146. 333, p. 1-9.en_EN
dc.identifier.doi10.1016/j.foodchem.2020.127460en_EN
dc.identifier.issn0308-8146
dc.identifier.urihttp://hdl.handle.net/10198/23350
dc.language.isoeng
dc.peerreviewedyesen_EN
dc.relationMountain Research Center
dc.subjectArtificial neural networken_EN
dc.subjectCatechin-rich extracten_EN
dc.subjectMachine learningen_EN
dc.subjectRandom foresten_EN
dc.subjectReaction kinetics modellingen_EN
dc.subjectSupport vector machineen_EN
dc.titleStability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologiesen_EN
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMountain Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameAlbuquerque
person.familyNamePrieto
person.familyNameFerreira
person.familyNameBarros
person.givenNameBianca R.
person.givenNameMiguel A.
person.givenNameIsabel C.F.R.
person.givenNameLillian
person.identifier107688
person.identifier144781
person.identifier469085
person.identifier.ciencia-id621C-B603-7519
person.identifier.ciencia-id221E-1E00-AB74
person.identifier.ciencia-id9418-CF95-9919
person.identifier.ciencia-id9616-35CB-D001
person.identifier.orcid0000-0003-4109-7921
person.identifier.orcid0000-0002-3513-0054
person.identifier.orcid0000-0003-4910-4882
person.identifier.orcid0000-0002-9050-5189
person.identifier.ridG-4516-2011
person.identifier.ridE-8500-2013
person.identifier.ridJ-3600-2013
person.identifier.scopus-author-id57192311941
person.identifier.scopus-author-id35937495700
person.identifier.scopus-author-id36868826600
person.identifier.scopus-author-id35236343600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccessen_EN
rcaap.typearticleen_EN
relation.isAuthorOfPublicationc74e6f34-eab8-47bc-906b-dafb96b9f473
relation.isAuthorOfPublication13260615-fd28-4b8b-9dd4-8a8466007579
relation.isAuthorOfPublicationbd0d1537-2e03-41fb-b27a-140af9c35db8
relation.isAuthorOfPublication3af07ffe-f914-48ba-a5d5-efcf70fdce01
relation.isAuthorOfPublication.latestForDiscoverybd0d1537-2e03-41fb-b27a-140af9c35db8
relation.isProjectOfPublication29718e93-4989-42bb-bcbc-4daff3870b25
relation.isProjectOfPublication.latestForDiscovery29718e93-4989-42bb-bcbc-4daff3870b25

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: