Logo do repositório
 
Publicação

Spectral markers and machine learning: Revolutionizing Rice evaluation with near infrared spectroscopy

datacite.subject.fosCiências Naturais::Ciências Químicas
datacite.subject.fosCiências Agrárias::Biotecnologia Agrária e Alimentar
datacite.subject.fosCiências Naturais::Ciências Biológicas
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorSampaio, Pedro Sousa
dc.contributor.authorCarbas, Bruna
dc.contributor.authorSoares, Andreia
dc.contributor.authorSousa, Inês
dc.contributor.authorBrites, Carla
dc.date.accessioned2025-11-14T17:10:06Z
dc.date.available2025-11-14T17:10:06Z
dc.date.issued2025
dc.description.abstractThe evaluation of rice varieties is a complex, time-consuming process requiring advanced equipment. This study aimed to discriminate 22 commercial rice varieties from six types by analyzing biochemical, physicochemical, and cooking properties. Near-infrared (NIR) spectroscopy, combined with machine learning, linked molecular properties with quality traits, offering a high-throughput solution. Partial Least Squares (PLS) models accurately predicted parameters such as whiteness (R2 = 0.94), width (R2 = 0.94), resilience (R2 = 0.96), and springiness (R2 = 0.98), highlighting key wavelength regions. Principal Component Analysis (PCA) revealed distinct clustering patterns, while Partial Least Squares Discriminant Analysis (PLS-DA) achieved a 17 % error rate in external predictions. Spectral markers at A6032/4457 cm-1, A7004/5241 cm- 1, and A7004/4749 cm-1 reflected biomolecular differences among varieties. This innovative approach enables precise quantification, classification, and differentiation of rice types, enhancing quality control, improving consumer satisfaction, and optimizing breeding selection processes efficiently.eng
dc.description.sponsorshipFunding for this research has been received from TRACE-RICE—Tracing rice and valorizing side streams along with Mediterranean blockchain, grant no. 1934 (call 2019, Section 1 Agrofood) of the PRIMA Program supported under Horizon 2020, the European Union's Framework Program for Research and Innovation, and Research Unit, GREEN-IT Bioresources for Sustainability Base Funding https://doi.org/10.54499/UIDB/04551/2020
dc.identifier.citationSampaio, Pedro Sousa; Carbas, Bruna; Soares, Andreia; Sousa, Inês; Brites, Carla (2025). Spectral markers and machine learning: Revolutionizing Rice evaluation with near infrared spectroscopy. Journal of Agricultural and Food Chemistry. ISSN 0308-8146. 492:3, p. 1-11
dc.identifier.doi10.1016/j.foodchem.2025.145569
dc.identifier.issn0308-8146
dc.identifier.urihttp://hdl.handle.net/10198/35080
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationGREEN-IT "Bioresources for Sustainability"
dc.relation.ispartofFood Chemistry
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectClassification models
dc.subjectMachine learning techniques
dc.subjectNIR spectroscopy
dc.subjectPCA
dc.subjectPLS-DA
dc.subjectRice
dc.subjectSpectral markers
dc.titleSpectral markers and machine learning: Revolutionizing Rice evaluation with near infrared spectroscopyeng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleGREEN-IT "Bioresources for Sustainability"
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04551%2F2020/PT
oaire.citation.endPage11
oaire.citation.issue3
oaire.citation.startPage1
oaire.citation.titleFood Chemistry
oaire.citation.volume492
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarbas
person.givenNameBruna
person.identifier.ciencia-idA41A-376D-3E8B
person.identifier.orcid0000-0002-5941-8749
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationbe27c391-b797-4aaf-851a-2c35c88a6b77
relation.isAuthorOfPublication.latestForDiscoverybe27c391-b797-4aaf-851a-2c35c88a6b77
relation.isProjectOfPublication68ac68c2-a4de-4a05-9295-fc48d29a11d0
relation.isProjectOfPublication.latestForDiscovery68ac68c2-a4de-4a05-9295-fc48d29a11d0

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
spectral.pdf
Tamanho:
4.62 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: