Repository logo
 
Publication

Deep learning recognition of a large number of pollen grain types

dc.contributor.authorMonteiro, Fernando C.
dc.contributor.authorPinto, Cristina M.
dc.contributor.authorRufino, José
dc.date.accessioned2022-01-17T15:17:18Z
dc.date.available2022-01-17T15:17:18Z
dc.date.issued2021
dc.description.abstractPollen in honey reflects its botanical origin and melissopalynology is used to identify origin, type and quantities of pollen grains of the botanical species visited by bees. Automatic pollen counting and classification can alleviate the problems of manual categorisation such as subjectivity and time constraints. Despite the efforts made during the last decades, the manual classification process is still predominant. One of the reasons for that is the small number of types usually used in previous studies. In this paper, we present a large study to automatically identify pollen grains using nine state-of-the-art CNN techniques applied to the recently published POLEN73S image dataset. We observe that existing published approaches used original images without study the possible biased recognition due to pollen’s background colour or using preprocessing techniques. Our proposal manages to classify up to 97.4% of the samples from the dataset with 73 different types of pollen. This result, which surpasses previous attempts in number and difficulty of pollen types under consideration, is an important step towards fully automatic pollen recognition, even with a large number of pollen grain types.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMonteiro, F.C., Pinto, C.M., Rufino, J. (2021). Deep learning recognition of a large number of pollen grain types. In International Conference on Optimization, Learning Algorithms and Applications: book of abstracts. Bragança: Instituto Politécnico. ISBN 978-972-745-291-0pt_PT
dc.identifier.isbn978-972-745-291-0
dc.identifier.urihttp://hdl.handle.net/10198/24688
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstituto Politécnico de Bragançapt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPollen recognitionpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.subjectDeep learningpt_PT
dc.subjectImage segmentationpt_PT
dc.titleDeep learning recognition of a large number of pollen grain typespt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceBragançapt_PT
oaire.citation.endPage27pt_PT
oaire.citation.startPage27pt_PT
oaire.citation.titleOL2A 2021 - International Conference on Optimization, Learning Algorithms and Applicationspt_PT
person.familyNameMonteiro
person.familyNameRufino
person.givenNameFernando C.
person.givenNameJosé
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0002-1421-8006
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridH-9213-2016
person.identifier.scopus-author-id8986162600
person.identifier.scopus-author-id55947199100
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscovery363b6c37-282c-4cd6-bb54-3c97cc700d78

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abstract OL2A 2021.pdf
Size:
266.76 KB
Format:
Adobe Portable Document Format