Publication
A machine learning approach to robot localization using fiducial markers in robotatfactory 4.0 competition
dc.contributor.author | Klein, Luan C. | |
dc.contributor.author | Braun, João | |
dc.contributor.author | Mendes, João | |
dc.contributor.author | Pinto, Vítor H. | |
dc.contributor.author | Martins, Felipe N. | |
dc.contributor.author | Oliveira, Andre Schneider | |
dc.contributor.author | Oliveira, Andre Schneider | |
dc.contributor.author | Wörtche, Heinrich | |
dc.contributor.author | Costa, Paulo Gomes da | |
dc.contributor.author | Lima, José | |
dc.date.accessioned | 2018-06-15T15:18:21Z | |
dc.date.available | 2018-06-15T15:18:21Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Localization is a crucial skill in mobile robotics because the robot needs to make reasonable navigation decisions to complete its mission. Many approaches exist to implement localization, but artificial intelligence can be an interesting alternative to traditional localization techniques based on model calculations. This work proposes a machine learning approach to solve the localization problem in the RobotAtFactory 4.0 competition. The idea is to obtain the relative pose of an onboard camera with respect to fiducial markers (ArUcos) and then estimate the robot pose with machine learning. The approaches were validated in a simulation. Several algorithms were tested, and the best results were obtained by using Random Forest Regressor, with an error on the millimeter scale. The proposed solution presents results as high as the analytical approach for solving the localization problem in the RobotAtFactory 4.0 scenario, with the advantage of not requiring explicit knowledge of the exact positions of the fiducial markers, as in the analytical approach. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Klein, Luan C.; Braun, João; Mendes, João; Pinto, Vítor H.; Martins, Felipe N.; Oliveira, Andre Schneider; Oliveira, Andre Schneider; Wörtche, Heinrich; Costa, Paulo José; Lima, José (2023). A machine learning approach to robot localization using fiducial markers in robotatfactory 4.0 competition. Sensors. eISSN 1424-8220. 23:6, p. 1-17 | pt_PT |
dc.identifier.doi | 10.3390/s23063128 | |
dc.identifier.eissn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10198/17690 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Indoor localization | |
dc.subject | Machine learning | |
dc.subject | Fiducial markers | |
dc.subject | Industry 4.0 | |
dc.subject | Robotics competitions | |
dc.title | A machine learning approach to robot localization using fiducial markers in robotatfactory 4.0 competition | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.title | Sensors | pt_PT |
person.familyName | Braun Neto | |
person.familyName | Mendes | |
person.familyName | Lima | |
person.givenName | João Afonso | |
person.givenName | João | |
person.givenName | José | |
person.identifier | 2726655 | |
person.identifier | R-000-8GD | |
person.identifier.ciencia-id | BF13-D66B-7D08 | |
person.identifier.ciencia-id | EA1F-844D-6BA9 | |
person.identifier.ciencia-id | 6016-C902-86A9 | |
person.identifier.orcid | 0000-0003-0276-4314 | |
person.identifier.orcid | 0000-0003-0979-8314 | |
person.identifier.orcid | 0000-0001-7902-1207 | |
person.identifier.rid | L-3370-2014 | |
person.identifier.scopus-author-id | 57211244317 | |
person.identifier.scopus-author-id | 57225794972 | |
person.identifier.scopus-author-id | 55851941311 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | b8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4 | |
relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A machine learning approach to robot.pdf
- Size:
- 2.39 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: