Publication
Interpreting Machine Learning Models with SHAP Values: Application to Crude Protein Prediction in Tamani Grass Pastures
| datacite.subject.fos | Ciências Agrárias::Outras Ciências Agrárias | |
| datacite.subject.fos | Ciências Agrárias::Agricultura, Silvicultura e Pescas | |
| datacite.subject.sdg | 02:Erradicar a Fome | |
| datacite.subject.sdg | 12:Produção e Consumo Sustentáveis | |
| datacite.subject.sdg | 04:Educação de Qualidade | |
| dc.contributor.author | Monteiro, Gabriela Oliveira de Aquino | |
| dc.contributor.author | Difante, Gelson dos Santos | |
| dc.contributor.author | Montagner, Denise Baptaglin | |
| dc.contributor.author | Euclides, Valéria Pacheco Batista | |
| dc.contributor.author | Castro, Marina | |
| dc.contributor.author | Rodrigues, Jéssica Gomes | |
| dc.contributor.author | Pereira, Marislayne de Gusmão | |
| dc.contributor.author | Ítavo, Luís Carlos Vinhas | |
| dc.contributor.author | Campos, Jecelen Adriane | |
| dc.contributor.author | Costa, Anderson Bessa da | |
| dc.contributor.author | Matsubara, Edson Takashi | |
| dc.date.accessioned | 2026-01-09T17:10:20Z | |
| dc.date.available | 2026-01-09T17:10:20Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Machine learning models such as XGBoost show strong potential for predicting pasture quality metrics like crude protein (CP) content in tamani grass (Panicum maximum). However, their 'black box' nature hinders practical adoption. To address this limitation, this study applied SHapley Additive exPlanations (SHAP) to interpret an XGBoost model and uncover how management practices (grazing interval, nitrogen fertilization, and pre- and post-grazing heights) and environmental factors (precipitation, temperature, and solar radiation) jointly influence CP predictions. Data were divided into 80% for training/validation and 20% for testing. Model performance was assessed with stratified 5-fold cross-validation, and hyperparameters were tuned via grid search. The XGBoost model yielded a Pearson correlation coefficient (r) of 0.78, a mean absolute error (MAE) of 1.45, and a coefficient of determination (R2) of 0.57. The results showed that precipitation in the range of 100-180 mm increased the predicted CP content. Application of 240 kg N ha-1 year-1 positively affected predicted CP, whereas a lower dose of 80 kg N ha-1 year-1 had a negative impact, reducing predicted levels of CP. These findings highlight the importance of integrated management strategies that combine grazing height, nitrogen fertilization, and grazing intervals to optimize crude protein levels in tamani grass pastures. | eng |
| dc.description.sponsorship | The authors thank the Embrapa Beef Cattle, Federal University of Mato Grosso do Sul Foundation, through the Postgraduate Program in Animal Science, the National Council for Scientific and Technological Development (CNPq), the Higher Education Personnel Improvement Coordination (CAPES, Finance Code 001), and the Foundation for the Support of the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT). | |
| dc.identifier.citation | Monteiro, Gabriela Oliveira de Aquino; Difante, Gelson dos Santos; Montagner, Denise Baptaglin; Euclides, Valeria Pacheco Batista; Castro, Marina; Rodrigues, Jessica Gomes; Pereira, Marislayne de Gusmao; Itavo, Luis Carlos Vinhas; Campos, Jecelen Adriane; Da Costa, Anderson Bessa; Matsubara, Edson Takashi (2025). Interpreting Machine Learning Models with SHAP Values: Application to Crude Protein Prediction in Tamani Grass Pastures. Agronomy. ISSN 2073-4395. 15:12, p. 1-17 | |
| dc.identifier.doi | 10.3390/agronomy15122780 | |
| dc.identifier.issn | 2073-4395 | |
| dc.identifier.uri | http://hdl.handle.net/10198/35439 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | MDPI | |
| dc.relation.ispartof | Agronomy | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject | Algorithms | |
| dc.subject | SHapley additive exPlanations | |
| dc.subject | Pasture management | |
| dc.subject | Precision livestock farming | |
| dc.subject | Panicum maximum | |
| dc.title | Interpreting Machine Learning Models with SHAP Values: Application to Crude Protein Prediction in Tamani Grass Pastures | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 17 | |
| oaire.citation.issue | 12 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Agronomy | |
| oaire.citation.volume | 15 | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Castro | |
| person.givenName | Marina | |
| person.identifier | 2303569 | |
| person.identifier.ciencia-id | 6417-7D8D-FD7E | |
| person.identifier.orcid | 0000-0002-6368-8098 | |
| person.identifier.rid | B-5197-2016 | |
| person.identifier.scopus-author-id | 56612728000 | |
| relation.isAuthorOfPublication | a7a3b08e-9d22-4faf-9224-36924d8ce7c8 | |
| relation.isAuthorOfPublication.latestForDiscovery | a7a3b08e-9d22-4faf-9224-36924d8ce7c8 |
