A carregar...
Projeto de investigação
Mountain Research Center
Financiador
Autores
Publicações
Bioactive and Phenolic Profiles in Pinus pinaster Bark: A Comparative Study of Microwave and Ultrasound Extraction Methods
Publication . Barros, Diana; Alonso-Esteban, José Ignacio; Finimundy, Tiane C.; Pereira, Carla; Vaz, Josiana A.; Pereira-Pinto, Ricardo; Fernandes, Élia; Pires, Preciosa; Santos, Joana; Barros, Lillian; Vaz-Velho, Manuela
This study conducted a comprehensive comparison of two green extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for recovering bioactive phenolic compounds from Pinus pinaster bark. The goal was to valorize timber industry waste and enhance the value of by-products through the development of eco-friendly processes to extract phenolic compounds from Pinus pinaster Aiton subsp. atlantica in northwest Portugal. MAE achieved significantly higher extraction yields than UAE (11.13 vs. 3.47 g extract/100 g bark) and superior total phenolic content (833 vs. 514 mg GAE/g). MAE extracts also exhibited enhanced antioxidant activity in most assays tested (DPPH, ABTS, ORAC, and OxHLIA), while both extracts effectively inhibited lipid peroxidation (TBARS) and showed activity against Gram-positive bacteria. Phenolic profile analysis revealed that MAE recovered a substantially higher amount of total phenolic compounds (230.0 mg/g) compared to UAE (86.95 mg/g), with procyanidins identified as the predominant compounds. The greater recovery of this complex procyanidin mixture by MAE is strongly associated with the enhanced bioactivities observed. Overall, this study confirms MAE as a highly efficient and sustainable technology for transforming pine bark waste into valuable antioxidant and antimicrobial extracts with potential applications in the food and pharmaceutical industries.
Chitosan-xanthan gum-based hydrogels loaded with essential oil distillation by-products of Aloysia citrodora Paláu for antimicrobial systems
Publication . Almeida, Heloísa H.S.; Santamaria-Echart, Arantzazu; Amaral, Joana S.; Aquino, Leandro Lima ; Rodrigues, Alírio E.; Barreiro, Filomena
Hydrogels, 3D hydrophilic networks formed by oppositely charged biopolymers like chitosan and xanthan gum, offer a safe, non-toxic, and biocompatible option for delivery applications. Essential oil (EO) by-products, such as hydrosols and wastewater, are sources of antioxidant and antimicrobial compounds, but their high dilution can limit direct applications. In this context, this work focused on the development of hydrogels via electrostatic complexation incorporating hydrosol and wastewater by-products from the steam distillation of Aloysia citrodora Palau, using a two-stage approach: (a) initial loading during hydrogel formation and (b) subsequent reloading of the hydrogels to further enhance the concentration of bioactive compounds. The effect of pH (4, 7, and 11) on polymer complexation was evaluated, as it influences polymer-polymer and polymer-bioactive compound interactions by modifying the protonation and deprotonation states of their functional groups. This effect was evident in swelling, release kinetics, morphology, and rheological properties. Fourier-transform infrared (FTIR) analysis confirmed the successful formation of the polymer complex. Neutral pH hydrogels showed the highest hydrosol entrapment (70.3%) and were selected as the most promising systems. Biological characterisation showed that the reloading process enhanced bioactivity. Wastewater-load-reload improved antioxidant capacity, driven by the high phenolic content. Moreover, hydrosol-loaded-reload systems exhibited antimicrobial activity, with bactericidal effects against Staphylococcus aureus and Escherichia coli, outperforming both unloaded and loaded systems. These findings highlight the potential of loading and reloading steps to valorise EO by-products, producing sustainable, functional hydrogels with high bioactivity, suitable for food, pharmaceutical, medical, and biotechnological applications.
Tunable physicochemical properties of PDMS@nanoparticle composites: modifications, mechanisms, and emerging applications
Publication . Cardoso, B.D.; Nobrega, Glauco; Afonso, Inês Santos ; Souza, Andrews; Neves, Lucas B.; Faria, C.L.; Díaz de Tuesta, Jose Luis; Ribeiro, J.E.; Lima, Rui A.
Polydimethylsiloxane@nanoparticles (PDMS@NPs) composites represent a versatile class of advanced elastomers whose physicochemical behavior can be finely tuned through nanoscale interfacial design and nanofiller morphology. Owing to their inherent flexibility, transparency, and chemical stability, PDMS based systems have emerged as model platforms for developing multifunctional materials with optimized mechanical, thermal, electrical, optical, acoustic and wetting properties. This review systematically elucidates the structure property relationships in PDMS@NPs composites and the interaction mechanisms between NPs and polymer chains that enable tunable control over bulk and interfacial behavior, with particular emphasis on how NPs dimensionality and aspect ratio (0D, 1D, and 2D fillers) regulate stress transfer, transport pathways, and functional interconnectivity within the matrix. Three main NP incorporation strategies, (namely, physical mixing of presynthesized NPs, in situ synthesis on cured PDMS, and in situ formation within uncured matrices) are critically compared in terms of interfacial coupling, dispersion stability, and processing scalability. Particular attention is given to how interfacial engineering, nanofiller morphology, and hierarchical architecture govern stress transfer, phonon transport, charge percolation, and optical or surface responses. In addition, a property design prospective is presented that links interphase design and nanofiller morphology to mechanical, thermal, electrical, optical, acoustic and wetting-controlled surface properties. This review further critically examines the limiting factors that reduce the applicability of PDMS@NPs composites, including performance degradation, interface instability, and limited recyclability, as well as long-term stability under mechanical, thermal, optical, and environmental conditions. Emerging directions such as green filler synthesis, recyclable PDMS matrices, dynamic and hi-erarchical interphases, and predictive modeling of morphology-dependent dynamic interfaces are outlined. Overall, this review provides a comprehensive and critical perspective on PDMS@NPs composites as a next generation of soft, functional, and sustainable elastomeric materials, opening new avenues for advances in flexible electronics, soft robotics, biomedical devices, and adaptive coatings.
Unidades organizacionais
Descrição
Palavras-chave
Contribuidores
Financiadores
Entidade financiadora
Fundação para a Ciência e a Tecnologia
Programa de financiamento
CIMO
Número da atribuição
UID/00690/2025
